AFRL-1F-WP-TR-2001-1530

INCREMENTAL UPGRADE OF LEGACY
SYSTEMS(IULS)

Don Winter
David Corman
Pat Goertzen
Tom Herm
John Shackleton

The Boeing Company
P.O. Box 516
St. Louis, MO 63166-0516

APRIL 2001
Final Report for 30 September 1996 — 28 February 2001

Approved for public release; distribution isunlimited. I

INFORMATION DIRECTORATE

AIR FORCE RESEARCH LABORATORY

AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY
PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNIAL INFORMATION
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

MICHAEL T. MILLS JAMES S. WILLIAMSON, Chief
Project Engineer Embedded Info Sys Engineering

Information Technology Division
Information Directorate

LY

éor EUGENE BLACKBURN, Chief

Information Technology Division
Information Directorate

This report is published in the interest of scientific and technical information exchange
and does not constitute approval or disapproval of its ideas or findings.

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

REPORT DOCUMENTATION PAGE NS ReApproved

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
April 2001 Final 09/30/1996 — 02/28/2001

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
INCREMENTAL UPGRADE OF LEGACY SYSTEMS (IULS) F33615-96-C-1969

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

63253F
6. AUTHOR(S) 5d. PROJECT NUMBER
Don Winter 3833
David Corman 5e. TASK NUMBER
Pat Goertzen 04
Tom Herm 5f. WORK UNIT NUMBER
John Shackleton 02
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

The Boeing Company
PO. Box 516 BOEING-STL-00P0074
St. Louis, MO 63166-0516
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)
Information Directorate AFRL/IFTA
Air Force Research Laboratory 11. SPONSORING/MONITORING AGENCY
Air Force Materiel Command REPORT NUMBER(S)
Wright-Patterson AFB, OH 45433-7334 AFRL-IF-WP-TR-2001-1530

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Report contains color.

14. ABSTRACT

This program developed, demonstrated, and is transitioning technology that will enable cost-effective, incremental
improvements to fielded embedded systems. The IULS wrapper technology was flight tested on an F-15 with no
anomalies. IULS software tools automatically generated 99 percent of the wrapper software. This technology provides a
low risk, affordable approach to system upgrades in response to computer-diminished manufacturing resources. It
supports faultless and simultaneous execution of new and legacy software and can be used to accelerate the insertion of
new technology into Air Force weapon systems and information systems.

The IULS program consisted of two tasks. Task 1 was to define incremental software upgrade processes and supporting
avionics architectures, identify and evaluate candidate solutions, and identify the preferred approaches for
demonstration. Task 2 was to develop reusable legacy wrappers, adapt an off-the-shelf CASE toolset to |ULS specific
needs, mature the incremental software upgrade process by using the CASE toolset to configure a wrapper for the 15
OFP, demonstrate the wrapped OFP on a COTS multiprocessor, and transition this technology to customer-sel ected
weapon systems avionics upgrade programs. IULS emulation technology was successfully demonstrated on C-17
hardware in the C-17 integration laboratory.

15. SUBJECT TERMS
software middleware, software wrappers, CORBA, IULS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT | b. ABSTRACT | c. THIS PAGE OF ABSTRACT: OF PAGES Michael T. Mills
Unclassified | Unclassified | Unclassified SAR 122 19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6548 x3583

Standard Form 298 (Rev. 8-98)
HES&S 31-15093-1 Prescribed by ANSI Std. Z39-18

TABLE OF CONTENTS

Section Page
IS o) o (= vi
[T 0 =1 o = PRSP vii
S Yoo o = 1
00 o = 4 o= ') o SR 1
1.2 PrOQram OVENVIEW.coueueiieuirtieisteestentesesseseseeseseese e sesses e sesessesessessesebesesbe st s be st s be e s b e e e b e e e b e nb e bt b ebesbesenbe st nbenees 1
121 PrOGIEIM PLEN ...t bbbt et bbb e bbbttt bbb s 1
IR B B To e W 407 A @ Y= S 2
A & (Y (=] (T aTot=To [T Yo U 4=)£ 3
I = - To3 (o (o101 1 o F PSP PPPRTR 4
Bl SOMWAIE VW BIDDEN S ...ttt ettt ettt b et b et b e e b e e b e s e bt se bt s e bR e Rt R e Re b et b et b e e b e b e e bt e ene e 4
3.2 VMFAPPING PrOCESS......ecueiieeeuieterie ettt sttt s ee e e e et e e e st e st sheebe s bt ehe e b e s bese e b e bese e e e meeneeateheebeaaeebeebeseeseenbanbeseans 5
O N (W ISR B =T o' o] 1S i = o] o PPN 7
41 Customer Upgrade REQUIFEMENT ..ottt ese st sttt sae st et b se e e e e e e et eseesessesaesbesaeseessesbeseans 7
4.2 Domain Analysis of Legacy and UPGragdecoeoeieeirerirenere sttt s sbe b see b e 8
421 CharaCterize LEgACY OFP........cociieieieie ettt st sttt e e e e ese e e aeebesaesnesbestesee st eneenes 8
422 CharaCteriZE HOSE ...ttt bbbttt 13
4.2.3 (oIS @ 1Y oo L= TR STS 14
G T B T~ o | 1T 0 o (gL AT = o] = G 18
4.3.1 Wrapper INITTAHTZAHON. ..ottt bbbttt 21
432 WWIADPES CONEION ...ttt ettt b e e b bbbt b e bt b et b e s e ke se ek e seebeseebesbenenaenens 21
433 Process And Data SYNCIONIZALION..........c.orveerieirieirieisieert et 23
434 S TS o [D = o o= 23
435 EXEEINGAl DA ACCESS.....ueeieeueeterie et ste sttt s e s e seesee e e et et s e st ebesbesaesaesbesbeseessesense e eneeneenessesbessesaesbeseeseens 26
4.4 DevelOpMENT ENVIFONMENT........ciiiiiiiiiitietese sttt e et seeaesae st b sbesbesaesbebeseeseesee s e e eaeeaeeaeenesbesbeseesbeseesen 26
45 Wrapper IMPlEmMENTALiONcooiiiiiiiieere ettt et s e e e e e e et ae e st e ae et e s beseesbe e ee 27
451 Build/Modify Wrapper MOGEL ..ottt s sen 27
452 Build/Modify Wrapper COMPONENLS........cceierierieriereeieeeeeeeesesressessessestesaessessessessesssssssessessessessessessessens 35
453 €T (oA AT =) o= G oo |- S 35
454 LINK WIEh OFP ...ttt ettt et b e b b et bentens 37
455 Evaluate WIapPEA SYSIEIM.....cceiececese ettt st st e e eneene e e enessessesnenreseennens 37
I = Y = o o= o IS Y (= o OSSP 38
4.7 F-15DemONSIration SUMMEIY......cccoirieirieieriet sttt sttt sttt se st st se b e e bbbt sbe st sbe e s be e be e sbe e be e eee 38
I O A [0 | ISR 7= o 1S3 - (o] o 40
Lo R 4 W= o) g = 007 Y 40
511 EMUIBLOT Tra08 SEULYceeiveieeeeeetee ettt bbbt bbbt 40
51.2 Emulator Strawman ArChItECIURE..........oiuiriie ettt et sae st nnn 42
513 EMUIBLION ENVIFONMENT.......ciuiiiiiiite ittt ettt sttt et e e e e b e e e e eme e e et ebesbesaesaesbeseeseen 42
514 EMUIation TOOI SEIECHIONcc.eiiiiiieie ettt ettt e et be b sbesbe b e 43
oI O I Y/ Lo o [ox= USSR PR RURPRURP 44

TABLE OF CONTENTS (continued)

Section Page
5.3 Customer Upgrade REQUIFEMENTccoiiiirieiriee ettt sttt st st sttt sttt b e 45
531 C-17 APM ettt bbb e bRt £ b bR £ A bR e e b bt E b bRt e b ke ettt e e e 45
532 17 CCU ittt bbbk e £ bt £ b bRt £ o b b e e e e e b ket e b bRt e e b ek et e bt e et 48
533 C-07 CUP ettt e e bbb bR A b bR bkt E b bR e e b bt e bt ne e 48
54 CCU Laboratory DemMONSIIFALIONcc.coeiiiuirieriereisiesie ettt esesse st saesbe e e besaesee e e see e e e esesaesaesbeseeseeseennas 50
54.1 PRESE ... R R R R R R R bRt R b b e nn e 51
54.2 PRBSE 2. R bbb 52
55 C-17 Technology Demonstration 1 (TD-1).....ccccecerereeierieeeeeseseseesteseeseessesieseeseesesaeseesessessessessessessessesseses 56
5.6 C-17 Technology DemONStration 2 (TD=2)cccereruereereerereeeresessessessessessessessesssssesssssesessesssssessessessessesseses 59
5.7 C-17 Communications Open System ArchiteCture (COSA) ..ottt 61
LR T O IS ¥ 100 7= O PSSR UPPRP 64
Perimeter Attack Radar Characterization System ANAIYSIS.........c.uuiieiiiiiiieiiiiieee e 66
6.1 |ULSTool-set Applicability to PARCS Hardware ObSOIESCENCE...........covvueirieririiinieiee e 67
6.1.1 SIMP ISSUES ...ttt ettt sttt ettt s b e st e b e s et e e b e Rt e £ o e b e b e et se e b b et e e b b ene e ee et et et seebebeneanaea 67
6.1.2 INSITUCEION SEE ISSUBS.......eeueeeeieiieicee ettt sttt et e be bt st sbe s eese e e et e e emeeseeseesesbesbesseseenbenes 68
6.1.3 Basic Operating SyStem (BOS) ISSUES........ciueiueieeieeeieireee et stesie e ste e seesseseeseeseesesses e ssessessesaesbeseesaens 68
6.1.4 Tactical Operating SySteM (TOS) ISSUES.cerererirerie ettt sttt sttt st e e be e sbesbesaesee b s 68
6.1.5 Conclusions Regarding TULS Emulation of PARCS ..ot 68
6.2 PARCS Sy St ASSESSITIENL. ...t itee ittt esiee sttt e see st s ssaesbeesbes s beesaes e beessee e beessaeebeesbeeebeesbessnbeessaesnbeesseesnseee 68
6.2.1 PARCS SySteM RODUSINESScvviiiiiieieiesese ettt 69
6.2.2 BMEWS/PAVE PAWS and COBRA DANE ANAYSES ..o 70
6.2.3 Radar Architecture Migration PrOgraML........cccecerereereerieeeiesesteseseestes e seessesseseeseesessessessessessessessessessens 71
6.24 PARCS and National MiSSIIE DEfENSEcceveeeeseeeee st nnen 75
ST T = Y @S ¥ o 1 = TS 76
6.4 PARCS SUITITIANY ..uveieieieitee ettt sttt e et h e bbbt R s e se e R e b e se e s e e e e e seerens e anearenrennesrens 76
10 IS @AY I = U =11 1T o 77
7.1 FOUNTALTION PrOGIAITIS.iueititetieettrtetertetert ettt sb st s s s b s b et b et b e b et e b e e e bt b bt b et b et b et et et et e s 80
7.2 TULSCV-22 TranSition BENEFITS........coiiiiiiriiiiisese ettt sbe e e e 81
Other Wrapper Applications and Upgrade TeChnology..............ooeiiuiiiiiiiiiiiiiiiiiiecc e 83
8.1 Other IULSAPPIICALIONS......c.ciiiietirierieitieieste sttt sttt st sae st et e sae st beseese e e e e e e e aeeaeeaeeneebesbesaesbeseeren 83
811 Open Systems ArChiteCIUrE WIBDPEN'Soiveeeieeeeeieieeie ettt sttt sttt sbe b ae b sbe e e eas 83
8.1.2 Wrappers FOr SCIentific COMPULINGouriririrert ettt et sbe b b saesbe b e 83
8.1.3 Wrappers For Business and Information System APPliCaHIONS.........ccceveveeveeieeieciesese e sres e e 83
8.2 Wrappers and SOftWArE REUSE...........ccciiiiiiie e ettt sttt sae st e e st esa e e s e e e seeaeeseeneetesresrestentees 84
8.3 Other Software Upgrade APPrOAChES.........ccceieierieriereeieeeeie e s ese st se e sae e e e se e ese s e e sesresresresreneenes 84
LI N O oo = To (=30 Koo K== TaTo 1Y oo U= 1T oo 85
IULS Lessons Learned and CONCIUSION.ioiiiutieiiiiie et e e e et e e et e e eete e eeeees 87
9.1 TUL S PIOCESS. ... ettt steeie st ee et ettt e et este e saeeeesae e eesse e eess e e seeseenseensenseenseaseenseaneeeesneensesneeseenneessennsensenns 87
0.2 UPQOrade ProgrammatiCS..........curueerieuerieierieesiesesiesesteesiesss e sae sttt esbe e s be e sse s esessesesbe e sbe st sbenesbenesbenens 87
LSRG TS ¥ (1 100 YT TSSO U RSP PRI 88

TABLE OF CONTENTS (concluded)

Section Page
10 RETEIENCES ... ettt e 89
10.1 BibliOGIrAPNY ..ottt bbbt bR e bbbt b e et ens 89
ACronymMS and ADDIEVIATIONSiiiiii e ettt e et e e 20
(€1 (01 | Y PP T PP PTTOUPPPT 93
Appendix A. Overload Warning System / Common OFP Mapping Table ..., 94
Appendix B. Overload Warning System Parameter Stubbing Tableccccooiiiiiiiiiiiii e, 97
Appendix C. Sample WrapidH CH+ LIStNG.....c.uiiiiiiieiee e e e e e e e eeens 105
Appendix D. Sample WrapidH Ada LISNGc.uuuiiiiieeii e 108

Figure

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.

LIST OF FIGURES

Page
WWIAPPET CASES ...evuiitieiii ettt ettt ettt e et et et et e et e et e et et e e e eaaeee 4
Nominal Legacy OFP Wrapper PrOCESS.ccuuuuiiiiiiiie ettt 6
VCC AN MPDP CONEXL..... ettt ettt e e e e e et e e e et e e e e b 8
VCC ProcesS0r CONFIGUIALION.eiiitiiee ittt e et e e e et e e e et eeeeba e eeeees 8
VCC DPM SOftWEAIE SEUCTUIE.ceiiiieiie et et e e e e e 10
VCC DPM CONIOI FIOW ...ttt e et e et e e eeba e e eees 11
VCC IOM SOfWAIE SHUCTUIE.ciiiti ettt et eeaanns 11
VCC IOM CONLIOL FIOW ...ttt ettt e et e e e 11
ADCP Processor ConfigUIAtiONuuiiiiiiiiiiiie ettt 14
Comparison of VCC and ADCP OFP EXECULIONuiiiiiiiieiiiiiieeeeiiiieeeeeiine e et e e e eeens 14
F-15 VCC Reh0St Candidate #Lccouuuiiiiiiiieee ettt 16
F-15 VCC Reh0St Candidate H2cuuuiiiiiiii ettt 16
F-15 OWS DeMONSIIAtiON PrOCESS.uiiiiiiiieeiiiie ettt e et e e 18
Generic Rehost Wrapper ArChitECIUIE.uiiiii e 19
OWVS SHTUCTUIE ..ottt ettt ettt et et et e e e e e e e e et e e et e enn s 20
Typical Data Transform for Preliminary Wrapper DeSignc..vveiiiinieiiiiiiieeiiineeeeiiineeeeee 20
OWS Wrapper ArChItECIUIEoue e 24
WIAPIAH TOOISEL ..o et e ettt e e et e e e et e eeees 27
Upgraded Software ArChitECUNE........coouui i e 27
Top Level Wrapper MOEL..........uii e 28
Perform OWS 20HZ Wrapper (PArt 1)v ittt 29
Perform OWS 20HZ Wrapper (PArt 2).........v oo 31
OWS TranSTEr 10 AQ@. ... ettt eaanns 32
OWS 20 HZ COPY OULPULS ...ttt ettt et e e e e e e e e e e e e enn s 33
DISPIAY INZ ... e et aaa 34
COMPONENE PrOPEITIES ...ttt ettt e et e e e e et e e e e raa s 35
COMPONENT COUER ...ttt e ettt e e ettt e e e e et e e e e ebt e e e eebe e eeeebaaeeeees 36
Generate WrapPer COUEuuuiiiiii ettt et e et e e e e e e enanns 36
EMUIALOr ArChILECTUIE ... et eaaans 40
Emulator Strawman ArChItECIUIEcouuuiiiiii e 42
Overview of TRW’'S REPLACE EMUIALOT........cciiiiiieeiiii et 43
APM CONEEXE ... ettt et ettt e et e ea s 45
APM Hardware CONfIQUIALIONc.uuiiiiiiii et e et e e et e e eeaan e eeees 46
Planned C-17 APM DeMONSIIALION.uiiiiiiieeiiii e e e 47
Optional C-17 APM DemMONSIIALIONuuiiiiiiieieiiie et e 47
CCU Laboratory Demonstration CONCEPL........ccvuuuuiieiiiiieeieiie e 48
L0 | 00 o1 1= PSPPSRI 49
CIP Hardware CONfIQUIALION.iiiiiiieiiiis ettt e e e e e e 49
CCU DEIMO GALES ... ettt ettt ettt ettt et et e e e e e et e e e et e e e e eenn s 50
DemOoNStration DEfINItIONcouueiii e 51
Demonstration SCHEAUIE ..o e 52
C-17 IRMS Elements Demonstrated in Phase 2 (Logical VIEW).........coovivviniiiiiiniiiiiineeceennn, 53
Phase 2 Demonstration Configuration (Physical VIEW)...........coiiiiiiiiiiiiiiiii e 54
CCU OFP Architecture COMPONEINTScccuuuieiiiiiee ettt e et e e et e e eebi e e eeai e eeees 54
Overview of EMUIALE 1/Ocoouuiiieii e 55
Post Demonstration RiSK ASSESSIMENTuiiiiiiiiiiiii e 56
CCU Demonstration Plan (LOGICAl VIEW)........cc.uuiiiiiiiiieieii et 57
CCU DEIMO GALES ... ettt et ettt et et et et et e e e e e et e e et e eenn s 58
TD-1 Demonstration CONfIQUIALIONuuuiiiiiii et e e e eees 59
CRB CIP INtEQration PIAN.ccuuiiiiiii e e e 60
COSA Program HISIOMY.........iiiiiiieee e e e e 62
Key COSA Program FEAIUINEScuuieiieei ettt e e e eeens 62
Key COSA / IULS DeVelOPMENT PrOCESSESccieuiiieiiiiie ettt 63
Key COSA / IULS Development ProCcesSeS (CONL.)iieuuuieiiiiiieeiiii e 64

Vi

Figure

Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.

LIST OF FIGURES (concluded)

Page
IULS Emulation of PARCS SMP ArChitECIUIe.uuniiiiiiiei i 71
IULS Emulator and RAM TRMiiiiei et 73
CV-22 Program ROAAMAPD.c.uuuieiiiiiieeeiii ettt e et e et e e e e e e b 77
CAAP Program EIBMENTS.ccuuuiiiiiii et e e e e e 78
CV-22 Processor Architecture and CRB Migrationccc.ooviiiiiiiiniiiiiineei e 78
Legacy and Demonstration System ArchiteCtureoo.oiiiiiiiiiii e 79
F-15E OpPtioNS fOr RENOSTcciiiiiieiii e 80
Tech Demo Components Selected for CAAP Relevancy (Preliminary)cccooevvvveiinneeennnn. 81
CV-22 Demonstration Software ArchiteCturecooiiiiiiiiiii e 81
CV-22 DemMONSIIatioN OULPULSiiieiiiee ettt e et e e e e e raa e 82

Vii

Table

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.

LIST OF TABLES

Page
F-15E Upgrade Canidates.couuiiuuiiiieii ettt e e e e e et e e et e et e e e e eenns 7
VCC Features and MOGUIESi it e e et e e e eeees 9
A O O ST=To 1 0 [=T o | K PP PPN 10
VCC Feature Upgrade IMPACL..........ooeuiiiiiiii ettt e e et e e e eeans 12
Example of DPM1 Processing Tasks/Times/Instructions Model............c.cooooiiiiiiiiiiiiiiiiiiineeenn, 13
O VST (oL@ Y/ F= o] o o ORI 24
OWS/COFP STUDS ...ttt e e e e e e ne s 25
Software COMPONENE SIZEouuiiii e e et e et e et e e e e aanns 37
Software ThroUughPUL USAQE. it e e e e e e e e eanaees 37
EMUIBLOr CANGIOAIESceereieiiiii ettt e et e e e e e 41
EMUIALOT Trade STUAY et e e et e et e e e e e e eannas 42
C-17 SUDSYSIEIMS ...ttt ettt et et e et e et e et b e e e e e aa e e et e eaaas 44
PARCS System ArchiteCture ANAIYSISiiiuiiiiie e 74
PARCS Software ArchiteCture ANAIYSIS.........ciuuiiei e 75

Viii

1 Scope

1.1 Identification

This technical report was developed for the Incremental Upgrade of Legacy Systems (IULS) research and
development (R&D) program by The Boeing Company (formerly McDonnell Douglas Aerospace) under
Contract No. F33615-96-C-1969 for Air Force Research Laboratory, Information Directorate AFRL/IFTA.
General Dynamics Information Systems (GDIS) and Honeywell Technology Center (HTC) participated.

1.2 Program Overview
The IULS program is an R&D effort whose main objective is to develop, demonstrate, and transition
technology that enables cost-effective, incremental improvements to fielded weapon system avionics. The
program was structured as two tasks as described in the IULS Technical Proposal. The objectives of
Task 1 were to:

Define incremental software upgrade processes

Define the supporting avionics architectures

Identify and evaluate candidate solutions

Identify the preferred approaches for demonstration and transition in Task 2.

The objectives of Task 2 were to:

- Develop reusable legacy wrappers
Adapt an off-the-shelf Computer Aided Software Environment (CASE) toolset to IULS specific needs
Mature the incremental software upgrade process by using the CASE toolset to configure a wrapper
for the F-15 OFP
Demonstrate the “wrapped” Operational Flight Program (OFP) on a Commercial Off The Shelf (COTS)
multiprocessor
Transition this technology to customer-selected weapon system avionics upgrade programs.

1.2.1 Program Plan
During Task 1, a Domain Analysis was performed to describe and analyze current avionics software
architectures and upgrade methods. The analysis task employed SEI's Feature-Oriented Domain Analysis
methodology (see FODA reference) and included several phases:
Context Analysis
Establish the scope and environment of upgrade domains in the F-15 and C-17
Identify application software classes and host processors
Describe each domain’s structure and context
Domain Modeling
Generate models of the candidate domains including current and future configurations
Wrapper Modeling and Simulation
Generate simulations of the candidate domain models and host hardware using PML-VHDL
models as appropriate
Map the candidate domain models to the proposed wrapper software architecture to identify
potential solutions to the application’s upgrade “problems”
Evaluate the performance of the candidate solutions
Identlfy Best Solution For Demonstration and Transition
Identify and specify a wrapper framework which implements the solutions
Define the wrapper process and tool capabilities required

Task 2 built upon the foundation established during Task 1. Task 2 followed a more product-oriented
methodology in which the wrapper development process developed in Task 1 was applied to several
domains. During Task 2, the preferred candidates identified during Task 1 for Demonstration and
Transition, the 15 and C-17, were matured, and more detailed solutions were developed. In the case of
the F-15, the demonstration was pursued through completion under IULS Task 2. For the C-17, the
demonstration was defined under IULS Task 2 and executed under a separate contract. Under IULS Task
2 additional transition candidates, the Perimeter Attack Radar Characterization System (PARCS) and the
CV-22, were also analyzed according to the Task 1 process. For PARCS application of the process
disclosed that it was not a valid IULS candidate, while application of the process to the CV-22 resulted in
proceeding with upgrade development under a separate contract vehicle.

1

The F-15 efforts included:
Complete trade to finalize decision on the content of the F-15 IULS demonstration
Design the wrapper
Map inputs and outputs
Map control flow
Build/modify wrapper model
Build /modify wrapper components
Generate wrapper code
Link with OFP
Flight test wrapped system
Evaluate wrapped system

The C-17 efforts included:
Complete trade to finalize decision on the content of the C-17 IULS demonstration
Transition demonstration to alternative contractual vehicle leading to an in-context demonstration to be
conducted in C-17 Avionics Integration Area and potential transition to emerging Communications Open
System Architecture (COSA) EMD opportunity
Complete requisite training and staff familiarization with IULS toolset

The PARCS efforts included:
Execute domain analysis to determine the feasibility/cost effectiveness of an incremental upgrade

The CV-22 efforts included:
Complete trade to finalize decision on the content of the CV-22 IULS demonstration
Transition demonstration to alternative contractual vehicle
Complete requisite training and staff familiarization with IULS tool-set

1.3 Document Overview

This report provides details of all Task 2 activities, organized along product lines F-15, C-17, PARCS and
CV-22. Task 1 results specific to these Task 2 activities are included in the appropriate product line
discussions. For the 15 demonstration, a complete description of the IULS Task 1 and Task 2 efforts,
including lessons learned, is provided. For the C-17 details of the efforts executed under IULS Task 1 and
Task 2, which led up to the separately funded C-17 Technology Demonstration, are provided. Aspects of
the separately contracted C-17 Technology Demonstration, which are significant regarding the use of IULS
tools, are also presented. Similarly, for the CV-22, IULS Task 2 activities which led up to the CV-22
Technology Demonstration along with lessons learned during the demonstration are provided herein. The
remaining details of the G-17 and CV-22 demonstrations will be provided in separate reports, prepared
under the contracts governing their execution. For PARCS, the IULS Task 2 efforts, which ultimately
rejected PARCS as an incremental upgrade candidate, are summarized. Details of the IULS Task 2
PARCS analysis have already been provided under a separate IULS submission. This report concludes
with a summary of important lessons learned during execution of Task 2 as well as the other separately
contracted IULS demonstrations.

2 Referenced Documents

Boeing Documents

BOEING-STL 99P0072, Software User Manual for the Incremental Upgrade of Legacy Systems,
April 18, 2000

BOEING-STL 00P0021, Software Product Specification for the Incremental Upgrade of Legacy
Systems, April 18, 2000

BOEING-STL 00P0024, Technical Proposal Weapon System Software Technology Support,
Delivery Order 7, IULS CV-22 Technical Demonstration Program, March 2, 2000

BOEING-STL 00P0039, Scientific and Technical Report for the Incremental Upgrade of Legacy
Systems Domain Analysis of the Perimeter Attack Radar Characterization System (PARCS), June
6, 2000

MDC 96P0018, Incremental Upgrade of Legacy Systems, Volume 1 - Technical Proposal, 6 May
1996

MDC 97P0104, Incremental Upgrade of Legacy Systems Final Technical Report, Task 1,
November 15, 1997

MDC 98P0040, Incremental Upgrade of Legacy Systems Software Requirements Specification,
June 23, 1998

MDC S20023-1 (1), Computer Program Development Specification for the G17A Operational
Flight Program, Computer, Propulsion, Data Management, January 27, 1995

Other References

Clark, Peter, Dale Harper, and Kenneth Littlejohn; Automated Reengineering for Legacy Weapon
System Software; paper presented to the 16" Digital Avionics Systems Conference, 26 October
1997.

Corman, Dr. David, Jahn Luke, Patrick Goertzen and Michael Mills, Incremental Upgrade of
Legacy Systems (IULS) — A Fundamental Software Technology for Aging Aircraft, paper
presented to the 4™ Joint DOD / FAA / NASA Conference on Aging Aircraft, 15-18 May 2000.

JLC-HDBK-SRAH, Technical Report, Software Reengineering Assessment Handbook, Version
3.0, DOD Joint Logistics Commanders, Joint Group on Systems Engineering (JLC-JGSE), March
1997.

Wright Laboratory WL/AAKD Contract No. F33615-96-C-1969, 19 December 1996.

3 Background

Avionics upgrades are frequent and occur for many reasons, including warfighting enhancements,
countering changing threats, hardware obsolescence, and computer resource under-capacity. In the long
term, the problem of cost-effectively upgrading legacy systems can be mitigated through re-engineering
with the latest-generation hardware and architectural concepts, including object-oriented software design,
which inherently contain and isolate change. On the other hand, legacy avionics software represents a
large investment in development tools, executable code, and ground and flight qualification. Should the
upgrade require complete re-engineering of this legacy software, much of this investment is lost, and many
aircraft programs simply cannot afford the up-front costs associated with re-engineering and complete
requalification.

A typical production avionics upgrade cycle for military aircraft frequently involves embedded software
changes. New versions of mission processor software, which is the most volatile class of avionics
software, are typically released annually and take two years to field from initial definition. One such
upgrade may put resource usage over the contractually imposed spare limit or the actual hardware
capacity. Hardware obsolescence occurs collectively over a longer term as vendors change their business
(military/commercial mix) and technology. Software tools and technology also evolve over a longer period
but may be driven by short-term events such as the introduction and imposition of Ada. The change cycles
are not synchronized so the optimal hardware, software and tool technology, and respective program
funding to support an avionics upgrade at a given point in time are often not available.

One solution to this dilemma is implementing re-engineering incrementally by inserting the latest technology
in smaller, affordable steps, thereby reducing risk and deferring or reducing cost. Software wrapper
technologies hold particular promise in meeting this challenge.

3.1 Software Wrappers

A wrapper is a software adapter or shell, which isolates a software component from other components
and its processing environment (its context). The wrapped component becomes a software object. Its
operational capability (functions and data) is encapsulated, and it can be integrated through its standard
interface with other software objects to form an OFP on a single or distributed processor host. The
wrapper manages the timeliness of all shared and external data, and provides any necessary
transformations.

For upgrades, the goal is to develop the new or re-engineered applications using the latest software
engineering techniques (such as object oriented design) and languages (Ada and C++) with minimal
concessions to the internal structure of the legacy system - as if all other applications were resident in the
new environment. Because the new software is written within the paradigms of OO design and languages,
the wrapper could eventually be removed once all of the application functions had migrated to the new
system. At this time, the legacy system could be removed.

The following figure illustrates three hypothetical cases of implementing software changes using wrappers.

Rehost
Legacy Source N Rehosted Executable,

1100110001110101
010101010101010010
111010010011010001
Compile 1100111001010010.

Hybrid e >
Legacy Executable Legacy Upgrade
1100110001101 Processor Processor
0101010101010101
0100010110010, i

Emulate
Legacy Executable
1100110001101
0101010101010101
0010111010010011
0100010101010

Upgrade
Processor

ISA Emulator

Upgrade
Processor

Figure 1. Wrapper Cases
4

Rehost. In the Rehost Case, the legacy processor is obsolete and/or its resources are insufficient to
support additional upgrades. The legacy software is re-hosted to a new processor by translating its
source code and/or recompiling it for the new target. Re-engineering the OFP on the new processor could
not be justified so wrapper components are added to make it “look like” an object in the OFP. New
software features can be added incrementally to the wrapped component, or preferably, designed as new
objects in the OFP.

Boeing’s AV-8B Common Navigation CNAV demonstration is an example of the Rehost case. The legacy
assembly language OFP had previously been hand-translated to C and rehosted on a PowerPC processor
in a prototype COTS Mission Computer. The CNAV object (upgraded navigation features) was interfaced
to the legacy OFP with wrapper-like components (gaskets).

Hybrid. In the Hybrid Case, the legacy processor and its OFP are retained for various reasons (high re-
engineering or logistics costs, etc.), but its resources are insufficient to support additional upgrades. Also,
there is an opportunity to satisfy upgrade requirements with reuse library components that are developed
with better languages (such as Ada95 or C++) and tools. New features can be added incrementally to the
upgrade OFP as objects on the new processor. The objects will be interfaced to the legacy OFP with
wrapper components. As components in the legacy OFP needed changes, they can be re-engineered and
moved to the new processor. At some point in the migration, the remaining legacy components are
rehosted, the legacy processor is upgraded or discarded, and the wrapper components in the new OFP,
associated with the legacy OFP interfaces, can be removed.

The F-15 Demonstration described earlier is an example of the Hybrid Case. The F/A-18 CNAV
demonstration was also a hybrid configuration. The legacy F/A-18 OFP written in assembly language was
running on a bit-slice processor card. CDiInt designed a PowerPC processor card that fits in a spare slot
on the legacy backplane. Gasket components were designed in Ada83 and C to run CNAV on the
PowerPC and interface/synchronize it with the full-up Navigation and Displays Modules running on the
legacy processor.

Emulate. Obsolete or underpowered hardware is also addressed in the Emulate Case. The legacy
software is judged to be very costly to re-engineer and/or re-qualify. The object code is executed on the
new processor by an emulation of the legacy processor’s instruction set architecture (ISA). Changes can
still be made to the legacy executable using the legacy compiler and Software Engineering Environment
(SEE). The emulator and other wrapper components make the legacy executable component (binary) look
like an object. Other feature upgrades could be added as objects on the new processor.

The emulator approach has advantages for software domains which are not volatile or complex, such as
the CG-17 APM’s OFP, and to safety-critical software which is costly to retest and may be developed as
large, tightly coupled components with autocoders such as FCC OFPs. Hardware and software emulators
have been proposed as part of hardware upgrades for F/A-18 and AV-8B AYK-14 Mission Computers in
the past. However, the OFPs are very volatile, complex, and increasing costly to maintain with the legacy
SEE, and the emulators would consume a large share of throughput.

3.2 Wrapping Process

As with any other software development activity, wrapper creation follows a process and s automated
with tools. However, a wrapper is a specialized type of software, and the process of creating a wrapper
imposes special requirements on the software development activity. This section describes the process
and automation that will be used to create wrappers.

The creation of an OFP wrapper follows the process shown in the Integrated Computer-Aided
Manufacturing Definition Language (IDEF)0 diagram in the following figure. In an IDEFO diagram,
consumed inputs (e.g., data files) go in the left side of an activity box, generated outputs (e.g., completed
design objects) emerge from the right side, constraints (e.g., requirements, schedules) go in the top, and
mechanisms (e.g., tool support) go in the bottom. In this diagram, shaded boxes represent activities of
greatest opportunity for automation in the IULS program. The subsections below describe tool
mechanisms that support the wrapper design process and the data that flows between them.

5

Generic
uLs

Wrapper
Characteristics

Prograrm

OFF Madel

- -
process.dorn
fh a

Hor 17—
v
Select preferred
! > Preirred W;apper [
SECY — pproaches approach(es
TP & Performance
Upgrade Model v Requirements
Hast | Characterize Host Perft;rm:mce_
evaluation
lans ™ Upgrade
r h 4

Characterize

Design
Host Model] Wrapper
Y Wrapper

» Heost
design®
OFF Analysis ¥
Teel Wrapper &raluati‘
Component SI’B‘pPe
Interfaces ysierm Document
T Ternplates
c . Performance tools
Madel Liby QI POILEn
e
Host =| Generate Wrapper
Analysis |Wrapperdo:s Documentation
Toels
L wWrapper
e
Reusable
Wrapper | Wrapper Wrapper Code
Campaonent Components
Library

Wrapped Test
CFP Wrapper

Cornpilation "Hot Bench,
and Linking Flight Derne
Taols - -

Figure 2. Nominal Legacy OFP Wrapper Process

This process has been applied in the approach to each of the candidate domains addressed during IULS
Task 2. The remainder of this report will detail the results of applying the IULS wrapper development
process to the K15, C-17 and CV-22 avionics and to the Perimeter Attack Radar Characterization System
(PARCS).

4 F-15 IULS Demonstration

4.1 Customer Upgrade Requirement

The F15 avionics system is a complex, federated system which is currently fielded in two configurations,
the newer F15E and the F15 Multi-Stage Improvement Program (MSIP). The following table lists the F-
15E avionics subsystems that are subject to frequent updates and hence were candidates for the avionics
upgrade demonstration.

Subsystem Major Functions Processor OFP Vendor
Language H/W [/ SIW
Avionics Interface Unit | Collects and processes discretes, | 1750A Assembly Boeing / Boeing
(AIV) performs signal conditioning, and Language
packs/unpacks data for the
AVMUX.
Flight Control Computer Triple-redundant computation of | 3-1750 JOVIAL Lockheed Martin
(FCC) flight control laws to drive control / Boeing
surface actuators
Programmable Monitors stores status and controls | Z8002 (Old) AL (Old) Dynamic
Armament Control Set | armament pre-launch and release. | R3000 (New) | Ada83/C (New) | Controls
(PACS) Provides weapons-avionics Corporation /
interfaces DCC
VHSIC Central Computer | Mission systems processing for | 1750 Ada83 LM / Boeing
(VCC) navigation, weapon control and
delivery, and cockpit displays
Multi-Purpose Display | Receives information from other | 2901 Bit | AL Honeywell /
Processor (MPDP) subsystems to drive cockpit | Slice Honeywell-
controls and displays Boeing

Table 1. F-15E Upgrade Candidates

The AlU is fairly typical of subsystems that collect and condition discrete and analog signals and put them
on a central avionics multiplex bus (AVMUX) for use by other avionics processors. It interfaces the Up-
Front Controls (alphanumeric screen and keypad) to the VCC and Multi-Purpose Display Processor
(MPDP) via the AVMUX. The FCC's flight control software domain made it an interesting candidate.
However its upgrade requirements were satisfied recently with faster 1750 processors and more memory.
Its safety-critical software is not volatile, and retesting is very expensive, involving extensive man-in-the-
loop, hardware-in-the-loop, and flight testing. The PACS has also been upgraded with RISC processors
and Ada83 stores management domain software.

The software features of the VCC and (MPDP) are upgraded yearly and currently make full use of their
computational resources. The VCC hardware and software system was upgraded in 1990. Its OFP was
manually translated from assembly language to Ada83 and hosted on MIL-STD-1750 processors. The
MPDP is primarily a display processor and driver and has been the subject of several hardware
upgrade/replacement studies. Both subsystems must have additional memory, throughput, and /O bus
capacity to support new requirements for warfighting features, performance, and maintainability. The F-15
Project has developed a new Advanced Display Core Processor which will replace both the VCC and
MPDP. A prototype ADCP was available to the IULS Project, so it was chosen as the upgrade Host for
the wrapper demonstration.

The F-15 VCC was a good candidate for incremental upgrade because it is fairly typical of a mission
processor (Mission Computer), and its software domain is typical of the mission processing domain for a
multi-role fighter aircraft (F-16, 18, AV-8B). It performs navigation and weapons delivery functions and
manages the cockpit display configuration. Figure 3 represents the context (environment) in which the
VCC (bolded box), the MPDP, and their OFPs operate.

Radar Flight Avionics Engine Engine Improved LANTIRN
Control Interface Monitoring Diagnostic Digital Pod
Computer Unit 1&2 System Unit Electronic
L&R L&R Engine
Control L&R

Avionics 1553

VHSIC Display 1553 Multi- GPS Inertial Radar Internal
Central Purpose Navigation Warning Counter-
Computer Display Set Receiver Measures
Processor Set
H009
Signal Attitude Air Program- .
Data Heading Data able Multiplex Bus
Recorder Reference Computer Armament | Discrete
System Control
Set

Figure 3. VCC and MPDP Context

The VCC manages a federated system with major interfaces formed with MIL-STD_1553 multiplex busses.

The F-15E contains five major busses. The multi-channel 1553 Avionics Bus links it to the tactical and
navigational sensors and vehicle systems. The 1553 Display Bus links it to the MPDP that drives the
controls and displays. And the HO09 Bus (similar to MIL-STD-1553) links it to older navigational sensors
and the stores management system (PACS). The VCC is the primary bus controller (the MPDP is the
backup), and sustains the highest data volume with the MPDP.

4.2 Domain Analysis of Legacy and Upgrade

The first step in the upgrade process was to analyze and characterize the Legacy, new Host and upgrade
system and software. The Feature Oriented Domain Analysis approach (FODA, see SUM References)
was used for this step, which includes three phases: Context analysis, domain modeling, and architecture
modeling. Since F-15 upgrades were previously analyzed and the avionics system is well documented, the
IULS FODA was done at a high level as described in the IULS Task 1 Final Report. For other legacy
systems that are less known/documented, or for more complex upgrades, a formal, detailed analysis is
recommended.

4.2.1 Characterize Legacy OFP
The VCC OFP is executed on six processor cards as shown in the following figure.

Data Data Data Bulk Bulk
Processor Processor Processor Memory Storage
Module 1 Module 2 Module 3 Module Module
. 3MIPS 1750 - 3MIPS 1750 (Backup) - 1.5MEG - 15 MEG
- 512K SRAM - 512K SRAM - 3 MIPS 1750 EEPROM EEPROM
- Segment A - Segment B - 512K SRAM
Pi Bus
]
1/0 Module 1/0 Module 1/0 Module Timing And High
1553 H009-1 H009-2 Discrete Speed
- Dual Channel - Single Channel - Single Chan Module Data
- 3 MIPS 1750 - 3MIPS 1750 + 3 MIPS 1750 - 16 Inputs Bus
+ 128K SRAM - 128K SRAM - 128K SRAM - 16 Outputs
- Battery Backed - Battery Backed - Battery Backed - Interrupts
- Segment Al - Segment H1 - Segment H2
Relay
Card
| | | | Growth
1553 Channel 5 & 8 HO09 Channel 1/3 & 2/4 Discrete I/0

Figure 4. VCC Processor Configuration

The cards contain 1750 processors and receive the OFP load from the non-volatile Bulk Memory Module
at power-up. The wo Data Processor Modules (DPMs) do the bulk of the mission processing which is
executed out of SRAM on each card. DPM3 is an in-flight spare whose state gets updated from DPM1
and DPM2 each computational frame with “critical load data” for back-up and restart. The Input/Output
Modules primarily perform bus interface data processing but also do some display format data pre-
processing. The Timing and Discrete Module processes discrete signal input/output/interrupts, contains
the VCC'’s clocks/timers, and controls a multiple relay card. All the cards and spare slots communicate via
a dual PI Bus (a high-speed parallel backplane bus) and a test/maintenance bus.

The VCC OFP is structured into 10 functional software modules that generally map to the major features
that the software provides to the aircrew as shown in the following table.

Feature ID Module
Air-to-air weapon targeting and delivery Air-to-Air
Air-to-ground weapon targeting and delivery Air-to-Ground
Aircrew controls and displays Controls & Displays
Flight data recording FR Flight Recorder
Guidance FD Flight Director
Navigation N Navigation
Self-testing, built-in test Computer Self-Test
In-flight mission simulation Y Simulator Interface
Avionics interface processing - multiplex busses and discretes
VCC execution control X Executive
Processing Support UTIL Utilities (arithmetic)
Program Execution RT Run Time

Table 2. VCC Features and Modules

Each module also executes DPM firmware, which performs built-in functions (BIFs, such as high-speed
arithmetic functions) and a memory loader program (MLP) to download the module’s executable load from
the Bulk Memory Module.

4.2.1.1 Legacy OFP Model

Domain modeling is integral to characterizing the OFP and the Host. It is used to describe aspects of the
behavior and architecture of the software in the chosen domain, which are useful in identifying commonality
and upgrade/wrapper requirements. This section contains informational, behavioral, and feature models
for the F-15 target, including definitions of the domain components and terminology. Subsequent host
processor and wrapper component modeling and simulation were done selectively to determine the
feasibility and resource usage of wrapper architectures.

The VCC OFP consists of five primary segments (consisting of processes, resources, and subprocesses)
which are executed on one of the five cards containing 1750 processors. The following table shows how
the segments and module components are distributed on the processors.

A process consists of Ada packages, one of which is a driver procedure called by the EXEC. Data is
communicated on a module and across the Pi Bus backplane with Ada records in Process Interface
Messages (PIMs). They contain the outputs of a process that are needed by other processes to run.
Critical Local Data Messages (CLDs) are packages containing data needed by the spare processor,
DPM3, to restart a process after reconfiguration. Its state is updated each frame with CLDs from the
other DPMs. The processes from a failed DPM1 or DPM2 are relocatable to DPM3.

Processing and I/O is controlled by the EXEC. It is rate driven with interrupts at 20 Hz, 10 Hz, 5 Hz and 1
Hz. As each process completes, it issues a completion event message with its output PIM. The EXEC

9

checks that all dependencies (other processes, PIM delivery, and resources) are satisfied before

executing the next process.

Module

DPM1 Segment

A

DPM2
Segment B

IOM H009
Segment H1

IOM H009
Segment H2

IOM A5690
Segment Al

AIA

X

AIG

CsT

CID

x

EXEC

FD

XX X |IX | X |X

X [X X X

FR

NAV

RT

Sl

UTIL

XX |IX X

X X X X

1/0 Packing/Unpacking

PI Bus
Packing/Unpacking

X X [X |X |X

X X [X |X |X

X [X [X |X |X

Table 3. VCC Segments

The following figure is a software structure chart for a DPM, which also illustrates the subdomains on the

card.
Applications Simulation Computer
Interface Self-Test
Critical Local Built-In Utilities
Data Functions
Executive Run-Time Process Interface
Messages
Pi Bus Diagnostics Module Load
Manager/Driver Program

Figure 5. VCC DPM Software Structure

The application code (such as A/A weapons targeting) is at the highest level along with the in-flight
simulation data insertion code and the computer self-test code. The next level consists of Built-In
Functions (which are called in the application code and executed by a separate chip set on the card), Utility
functions, and CLD data collection for DPM3 updating. The next layer contains the Executive software,
which controls the execution of processes, segments and card 1/O, the Ada compiler-generated run-time
code, and PIM data accumulation and dispersion. At the lowest level, next to hardware/microcode, the Pi
Bus driver controls data transmission on the backplane. The on-card diagnostics, which are conducted by
a separate chip set and the BMM-to-DPM SRAM loading program are also at the lowest level.

Virtually all feature upgrades affect the application level domain with some carry-over into the supporting
run-time, EXEC, and PIM/CLD areas. Wrappers or adapters for new processing which are not added to
current Ada packages will be inserted into at the middle layers.

VCC processing is performed in “segments” which are EXEC-scheduled collections of processes,

resources, and subprocesses. The following figure illustrates the sequential flow of control as a segment
executes on the DPM.

10

DPM Execution

The PIM records are taken off of the Pi Bus and are available to needy processes.

20 Hz 20 Hz 20 Hz
PIM Processing PIM
Inputs Qutputs

Sub 20 Hz
PIM
Inputs

Sub 20 Hz
Processing

Figure 6. VCC DPM Control Flow

The Executive schedules the 20 Hz processes, which are ready to run.
The output PIMs from the completed 20 Hz processes are distributed internally and/or on the Pi Bus.
Sub 20 Hz PIMs are taken off of the Pi Bus for waiting lower rate processes.

The 10 Hz, 5 Hz and 1 Hz processes which have their prerequisite data are scheduled.

The sub 20 Hz PIMs are distributed to users.
The processor enters a wait state until the next segment (frame).

The following figure illustrates the structure of IOM software.

The domains are very similar to the DPM’s.

Display Applications
Critical Local Built-In Utilities
Data Functions
Executive Run-Time Process Interface
Message Pack/Unpack
Pi Bus Diagnostics Module Load
Manager/Driver Program

Figure 7. VCC IOM Software Structure

Some control and display processing is done in the top

application layer. The next layer contains the same kind of software as the DPM'’s second layer. The third
layer has software, which packs and unpacks (transfers) data between the MUX bus message formats

and the PIM record formats.

general purpose (GP) 1750 processor as shown in the following figure.

1/0 Processor

20 Hz Special Sub 20 Hz
MUX 20 Hz MUX
Inputs — MUX1/0 [— Inputs
Processor
Simulation 20 Hz
& Display Unpacking
Processing [PIMs

The IOM executes segments on its I/O driver processor (IOP) and its

20 Hz
MUX

Sub 20 Hz
MUX
Outputs

Outputs

Sub 20 Hz Display & 20 Hz Sub 20 Hz

Unpacking Other Packing Packing
PIMs — Processing [

Figure 8. VCC IOM Control Flow

I/O Processor Execution

The 20 Hz inputs from MUX participants are solicited and received.
Special 20 Hz MUX I/O is performed, such as time-critical INS data turnaround to the Radar.

11

The sub 20 Hz inputs from the MUX are solicited and received.

20 Hz messages containing current-frame computed data packed by the GP are sent out over the
MUX.

Sub 20 Hz messages are sent out.

GP_Processor Execution

- At the start of the 20 Hz frame, some simulation and display processing is performed.
As the current 20 Hz MUX inputs are received by the 1/O processor, they are unpacked into PIMs and
distributed over the Pi Bus.
Once the sub 20 Hz inputting is completed by the 10P, the messages are unpacked into PIMs and
distributed.
Some display and other processing is performed (such as flight recorder formatting by a HO09 GP).
As PIMs are received from current-frame 20 Hz processes in the VCC, the data is transferred into
messages for the IOP to send.
Current-frame sub 20 Hz data is packed into messages for the IOP to send.

The following are some of the major feature changes that are tentatively planned for the F-15E in the next

five years. The table indicates which modules will probably be affected by the upgrade, and the breadth of
each change.

Upgrade Feature A/A | AIG C/D FD FR NAV Sl EXEC | UTIL
Add AIM-9X A/A Missile X X X X X
Add Helmet Mounted Cueing X X X X X X X X
System
Add Combat ID X X X
Add Joint Stand Off Weapon X X X
Add Off-Board Targeting X X X X X X

Table 4. VCC Feature Upgrade Impact

The VCC currently uses almost all of its throughput, memory, and MUX bandwidth. Hardware upgrades
such as additional, faster DPMs and IOMs will be necessary to support the feature upgrades.

As stated above the VCC OFP consists of five primary software segments (A, B, Al, H1, and H2), each
consisting of processes, resources, and sub-processes, that are executed on one of five cards containing
1750 processors. The following table shows a sample characterization of the processing segments and
module components that are in Segment A executing on processor DPM1. A domain model was
constructed with this type of information using Cosmoséa to prototype approaches to VCC upgrades in
terms of memory, throughput, and Pi Bus backplane usage (via Process Interface Messages, PIMs).

The execution of the VCC OFP can be characterized as follows:
- A single thread per processor.

No time slicing, ho preemption.

No other tasks executing across a 20 Hz frame boundary.

Data is transferred (pushed) to consumers upon completion and tasks are run when all inputs are
ready in input PIMs.

All output data is copied to a common or global location in output PIMs.

12

Model ** 1% Application Group (Module) Execution
Process (Processor Capacity = 3 MIPS)
No. ID Segment Time (ms) Max Inst. Execution /PIM Notes
Simulated
1 SI20 Hz 0.11 330
2 SP Data Distribution 1.09 3270
Send Message 1 to H1
3 A |Segment A Launch Zones 1.19 3570
Wait for Message 4 from Al
4 N |Engine Monitor 20 Hz 0.21 630
Send Message 6 to Al
Wait for Message 7 from H1
5 N |Best Avail Nav 6.33 18990
6 N |A/G Target Designator 0.45 1350
7 A |20 Hz Process 6.93 20790
8 D |A/A Radar Control 0.70 2100
9 N |SP Management 20 Hz 2.05] 6150
10 D |A/G Radar Control 1.14 3420
11 D |OWS 20 Hz 151 4530
12 D |Jam Cue Control 0.26 780
13 D |GCWS OWS 20 Hz 0.85] 2550
14 D HUD Control 0.29 870
15 D |TSD Control 0.32 960
16 D |Targeting Pod Control 1.22 3660
Send Message 2 to B,A1,H1
17 D |Display Control 7.14 21420
18 X EXEC 20 Hz 0.04 120
19 X |Complete 20 Hz Processing 0.18 540
20 D |OWS 10Hz 0.38 1140
21 N |UFC 0.92 2760
22 D |GCWS OWS 10 Hz 1.41 4230
23 X EXEC 10 Hz 0.11 330
24 N |SP Management 5 Hz 0.33 990
Send Message 3to A1l
25 EXEC 5 Hz 0.02 60
26 EXEC 1 Hz 1.60 4800
27 Self Test 0.77 2310
Totals 37.55 112650

4.2.2 Characterize Host

The upgrade host, the ADCP, essentially replaces both the VCC and MPDP in the F-15 avionics system
VCC context, as shown in the following figure. The electronic interface between mission processing and
display processing in the ADCP is via a VME backplane instead of the “Display 1553” multiplex bus. The
prototype ADCP used for the demo has a PowerPC CPU on one general-purpose processor (GPP) as

Table 5. Example of DPM1 Processing Tasks/Times/Instructions Model

illustrated in the following figure. The ADCP OFP is executed on the GPP processor card.

13

Video Video
Qutput Input
Module Module
Growth |
VME Busses
1
[! = =
I/0 Module General Image
Purpose Processing
Processor Module
- PowerPC . PowerPC
- DRAM/Flash - DRAM/Flash
- Triple Chan 1553 . Graphics Controller;
- All Segments - Timers

Discrete I/O Serial I/O 1553 Channels

Cockpit Displays

Figure 9. ADCP Processor Configuration

4.2.3 Host OFP Model
The ADCP OFP applications are written in C++. The AD

CP infrastructure including the “main” routine is

written in object-oriented C++, and runs above a VxWorksa RTOS. The Host OFP and additional features

can be compiled using a Green Hills MULTI& (C++, Ada, etc.) compiler.

Host's execution are the following:

Some characteristics of the

“Single Processor Event Driven Executive” with expansion to multiple loosely coupled processors.

Multiple threads per processor.
Higher priority threads can preempt lower priority t

hreads.

A 20 Hz task must complete within a 20 Hz time frame.
A 10 Hz task may cross a 20 Hz frame but must complete within a 10 Hz time frame.

A task is “awakened” when its inputs are available.
A task retrieves the inputs it needs by calling “get”

functions.

One way to characterize the Host is to show how the task events and their processes (P) are scheduled.

The following figure contrasts the Scheduler for the orig
implementation.

inal VCC OFP implementation with the ADCP

VCC Legacy OFP

Ada Executive

\P1| |P2| |P3| | |P4| i{|P1||P2]||P3|I |P5]|!

é(_ 20Hz Processes —)Eg_ 10Hz -)é(— 20Hz Processes —)%(— 10Hz -)é

i(— 20Hz Frame ,§< 20Hz Frame —)E
D | o ‘ !
G | e *| PL{ P2]{ P3 i P1 | P2|> P3 ;
3 | B s
S | —— P4 |—| P5 : | i :
@y ! . T - : i i i
= v v v 7 7 v 7 v

Infrastructure Event Channel

ADCP Host OFP

Figure 10. Comparison of VCC and ADCP OFP Execution

The information from FODA is one of several inputs to the upgrade design. Performance modeling was

performed for the F-15 Project's upgrade program using the Nuthena Foresighta tool.

14

Extensive

measurements were made on the Host OFP in the ADCP. This data indicated that the single-processor
ADCP had sufficient throughput, memory, backplane, and I/O bandwidth to execute a reengineered OO
OFP with spare capacity for the additional wrapped upgrade. Therefore, additional domain modeling was
not performed for this case study/demo. It is highly recommended that architectural modeling be
performed for more complex upgrades using tools such as HTC's MetaHa, especially if the upgrade
involves changes in the software topology (e.g., partitioning the processing onto multiple processors or
subsystems).

4.2.3.1 Selecting the Preferred Upgrade Candidate
Several F-15 avionics system candidates for demonstrating IULS wrapper technologies were identified
including three from the VCC (one hybrid and two rehost) and one from the MPDP. The best candidates
involved a VCC upgrade. Part of the rationale supporting this statement is that at the time of selection of
Task 2 15 demonstration, the F15 project was considering an upgrade to the VCC with the objectives
of:

Mitigating the hardware obsolescence of the 1750 processors and other components.

Easing the VCC capacity restraints to allow the efficient addition of new functionality.

Giving the VCC capabilities to exploit Boeing’s Common OFP reuse components for additions

and upgrades.

The emulator approach was not viable for any VCC candidate. The resource capacity relief it would
provide was questionable, and the wrappers required to interface with new COFP components would be
costly.

The first candidate for a low risk yet valuable demonstration was a Hybrid approach. COFP components
would be added to a new GPM as was demonstrated during the initial Common NAV project. For the
Hybrid demonstration the R4400 GPM4 would be used again with the objective of adding at least one
module from the Boeing Common OFP reuse library. The modeling/simulation performed in Task 1
indicated that there were sufficient resources available to accommodate the processing. The legacy OFP
analysis and wrapper building would be done with the new Task 2 tool-set, process, and framework. The
results in terms of engineering cost, wrapper complexity, and wrapper performance would be compared
with those from the manually generated Common NAV wrapper demo.

Two alternative VCC demonstrations, involving a rehost, were identified. Again they had application to F
15 avionics configurations which will not be fully upgraded or reengineered yet will receive an ADCP-like
unit. The Task 1 plan proposed to analyze legacy OFP components on all five VCC processors and to
utilize the IULS tools and processes to merge them into a single component to be executed on a single
processor card in the ADCP. As part of the Boeing/CDInt R&D project, the capabilities of Ada83/95 target
compilers and the execution of additive loads on a COTS processor were examined. One conclusion
drawn was that a combined, re-hosted F-15 software configuration was viable and portable without
reengineering. The ADCP had spare slots for additional COTS processors that could serve as hosts for
distributed COFP components linked with ORB wrappers.

Early in Task 2, two candidate VCC re-hosts were presented to the F15 and IULS customer. In the first
candidate, the ability of the IULS tools to wrap legacy components for reuse in a modular architecture on
an OTS processor would be demonstrated. In this case the Ada 83 Overload Warning System (OWS)
Module from VCC Suite 3 would be integrated into the C++ COSSI Operational Flight Program (COFP) as
illustrated in the following figure. Task 2 activities involved in this re-host included:

Analyze and model reuse component and target system

Extract multi-rate OWS Module and PIMs from VCC DPM1 Segment A

Combine OWS components using Ada95, and enclose with wrapper components to

interface with COFP.

15

Ada83

S, LN

. AN

Common '
OFP Advanced Display Core Processor - PowerPC/C++

Library General™RyrposSs Processor Image 10
Reuse Processor Modules
Components Modules

COossl Overload
IULS Applications Warning Sys Display
Framework Infrastructure gt~ Wrapper Services I/0 Services
Library
Wrapper / VMEbus

Components

Figure 11. F-15 VCC Rehost Candidate #1

In the second candidate, the ability of the IULS tools to rehost a legacy OFP onto a new OTS processor
would be demonstrated. It would be upgraded with COFP reuse components from the Common OFP
Library as part of the rehost. This is a more challenging case in which two wrappers are required as
illustrated in the following figure. Wrapper 1 adapts merged Ada83 modules and PIMs from VCC Suite 3.
Wrapper 2 adapts the COFP augmented with the Navigation Data External Environment from the COFP
Library. Task 2 activities involved in this rehost included:

Analyze and model legacy OFP, reuse component, and target system

Extract TBD Ada83 modules and PIMs from Suite 3 VCC OFP

Combine into one segment using Ada95, and enclose with wrapper components to execute on one

general purpose processor (employ COSSI OFP essentially as a wrapper)
Add/host a COFP reuse component using a wrapper including infrastructure and ORB (if

necessary)

F-15 Demo Approach #2
Rehost Legacy OFP And Add Reuse Component

VCC
DPM1 DPM2 DPM3 IOM IOM IOM
| 1/0 Services | | 1/0 Services | | 1/0 Services
Segment A Segment B Segment C Segment H1 Segment H2 Segment A1
Applications Applications Applications Applications Applications Applications
PIMs PIMs PIMs PIMs PIMs PIMs
Pl Bus
ADCP Common
GPP GPP IPMs IOMs OFP
cossl Library
OFP
Wrapper Merged Reuse
Components Applications Upgrade App.
P pp PY pp Display Components
Wrapper-1 Wrapper-2 Services 1/0 Services |
VMEbus

Figure 12. F-15 VCC Rehost Candidate #2

Early in Task 2, Approach #1 was identified as the preferred approach and with customer concurrence it
was selected for the Task 2 15 Demonstration. By this time the PowerPC had been chosen over the
R4400 as the upgrade (target) processor due to availability and compliance with design standards.
Rational governing the selection of Approach#1 included:

16

It supported evolution to a C++ (COFP) F-15 OFP baseline - the plan (at that time) was to evolve
to a COFP software baseline for the F-15

It exercised all elements of the IULS rehost tool-set
It was lower risk and cost than Approach #2 -- It would leave sufficient funding to pursue a C-17 IULS
Demonstration plus other IULS transition candidates.

4.2.3.2 Characterize Host Upgrade
A number of upgrade approaches were examined by the F15 Project (and subsets were considered for
the IULS demonstration) including:

1. Recompile the entire F-15 Ada83 OFP for the new Host processor and rewrite/replace/wrapper
any code necessary to operate with the new COTS 1/O, backplane, and integrated display driver
hardware. (This is a traditional approach.)

2. Recompile just the applications (features) and rehost them on a new COTS Infrastructure, real-
time operating system (RTOS) and hardware-interface software layers. The Infrastructure
replaces the Executive functionality and adds ORB multi-processing capability, allowing the OFP to
be physically partitioned. The applications interface to the lower levels with wrappers/adapters.

3. Re-engineer the entire OFP in an object-oriented, layered architecture (including the new
Infrastructure, RTOS and hardware-interface layers), drawing common feature code from a reuse
library, and using wrappers/adapters to adjust interfaces.

4. Use a combination of 2 and 3 and take advantage of the multi-processor Infrastructure and RTOS:
After re-establishing the feature baseline on the new Host, add new OO features to another OFP
partition or other processors, drawing from a reuse library.

All approaches could use IULS technology to some extent, but all would be very large-scale efforts. The
F-15 Project took Approach 3 to re-engineer a subset of Production F15 OFP functionality and run on the
new ADCP as part of the “COSSI” R&D program

A limited version of Approach 4 was chosen for the IULS OWS Demonstration since it fit within the scope
of the project yet exercised most of the IULS technology in a realistic scenario on a real avionics platform.
It illustrates how a new feature designed with one language and/or architecture can be merged in a host
with a different language/architecture using a multi-lingual wrapper. Multi-lingual OFPs are starting to be
used in mission-critical systems. They can make efficient use of multi-lingual reuse libraries, and are made
possible in part by new-generation multi-lingual system/software development tools (such as Rational
Rosed and Green Hills MULTI&), and languages (such as Ada95 with built-in interfaces to other
languages).

4.2.3.3 Selecting the Preferred Wrapper Approach

Since the OWS upgrade is more than a re-host/re-compile of the OWS software on another hardware
system it is classified as a hybrid upgrade with the OWS function in a new software partition formed with a
wrapper. The ADCP/OFP combination was a convenient demonstration Host onto which the additional
upgrade feature could be “wrapped”. The performance goals of the demo were simply to reproduce the
OWS behavior and have the worst-case path of the new system execute within the required 20 Hz frame
rate. This was judged to be possible based on performance modeling of OWS within the VCC OFP,
worst-case measurements of the baseline Host OFP (with spare capacity), and estimates of the execution
of the wrapper derived from a preliminary WrapidH model.

For the Host “COSSI” OFP, a subset of the VCC OFP features were re-engineered or implemented with
components from the Boeing Common Software Reuse Library (such as the Infrastructure/ORB) providing
a baseline upgraded Host software environment. The Overload Warning System feature was picked as an
additional upgrade feature because it is unique to the F15 and not available from a reuse library. OWS
source code from VCC OFP Segments on DPM1 and DPM2 were ported to the ADCP GPP.

The OWS function consists of a series of calculations that transform the inputs (primarily weapon and fuel

load and flight-state) into the overload warning outputs including cockpit display features. The software

interface to the legacy OWS function consists of a series of process interface messages (PIMs) and

Critical Load Data (CLD). The OWS function and associated PIMs and CLDs are written in Ada and can

be compiled by an Ada95 compiler. Their memory layout is fixed by Ada representation specifications.

The OWS function assumes that the PIMs are updated by the Infrastructure before it is called. This
17

assumption constitutes a timing dependency and a push data flow architecture.

In the legacy F15 host, the infrastructure around the OWS function consists of a software executive layer
(EXEC) running on each processor module. The 32-bit Parallel Interface (Pl) bus transfers PIMs and
CLDs between the various functions in the distributed processing system.

The overall sequence of events within the DPM processing was shown in Table 5 for both the OWS 20 Hz
and 10 Hz cycles. The queued message and OWS components were shown in bold. The timing data can
be characterized as performance data, however the main issue is not to improve the performance but to
be able to re-use the OWS code and have it run correctly and reduce the development and testing effort.

There are obviously many differences between the legacy VCC hardware and its software architecture and
the new Host processor. The VCC/OWS was a single thread-per-process but multi-process system
running on multiple loosely coupled processors. The target is a multi-threaded multi-process system
typical of the latest real-time mission processors. A control and data adapter was necessary to make use
of the existing OWS code intact yet make it work within the new processing environment.

Subsequent to selecting the problem domain to be addressed in the IULS F-15 Demonstration, a multi-step
process was used to execute the program. The F-15 OWS Demonstration process is shown in the
foIIowmg figure. Key features include:

Continuation of the Task 1 Domain Analysis through the Task 2 Wrapper Generation

Development of the WrapidH Tool using the Honeywell Domain Modeling Environment (DoME)

Wrapping the F-15 Ada OWS Functionality and integrating it into the COFP

Validation of the Wrapped Software using F-15 Simulation Tools

Live Flight Demonstration of the Validated Product

Task 2 Automated Wrapper Generation y

Task 1 Domain Analysis
Analyze Develop Develop /‘%P_,“
Wrapper Wrapper Framework /
Domain Architecture Toolset . Update Model

Framework /
Toolset

» Update Tool Design

§ Flight Test Demo

u » Update Shelf

¥ ¥
Wrapper Wrapper
Model Architecture

Tune the Toolset Using
Real-World Examples

Wrapper Architecture
o)
e Domain Anal ys| S (Honeywell's DoME)

« Initial Model O

« Initial Shelf Components
« Initial Tool Design

Graphical | - Lega yW apper

uuuuu

DTE, STF,
AIC, Flight
Sim

Validate the Wrapped
S W Using Simulation

Figure 13. F-15 OWS Demonstration Process

4.3 Designing the Wrapper
As identified in Task 1 and shown in the following figure, the general framework of the Rehost wrapper
architecture is largely independent of the technique used in an upgrade. The wrapper services associated
with the rehost mode are as follows:
Wrapper Initialization
Wrapper control - the wrapper process executes as a task of the host Executive
Process and data synchronization
Interrupts and Synchronization
Clock services
Shared data access

18

“Get” - access to legacy memory space by a process
“Put” - move data to legacy memory space
External data access
Input handler
Output handler

Legacy OFP Hybrid Processor
Memory
_____ D :jit_a(_;at?/va;_/ - Space Events
Get/Put T

Sync/Timers/

Wrapper Controls/Reset

Interface

1/0 Data Flow

Drivers/Reformat

Figure 14. Generic Rehost Wrapper Architecture

For the selected demonstration, the Legacy OFP includes three Ada83 functional threads, as shown in the
following figure. These threads, execute at specified rates under control of the Ada executive and draw
their inputs from other Ada threads through the “PIMs” shown in the figure. Each PIM represents one or
more data items used by the three OWS threads. The interface from the OWS threads to the other Ada
threads is through the three output “PIMs” shown in the figure. There is a one-to-one relationship between
the threads and the similarly named output PIM. The challenge for the demonstration 5 to develop the
“Wrapper Interface” which integrates this Legacy OFP into the C++ COFP. In order to accomplish this,
each of the Rehost wrapper services listed above must be supplied.

19

INPUTS PROCESSING OUTPUTS

From Other Threads To Other Threads
D_ADC_20 HZ_INPUT_PIM ADA_EXECUTIVE | D_OWS 10 HZ_PIM |
*Air Data *Functional Threadsat Fixed
D_AFCS 20 HZ_INPUT_PIM Rates D_OWS 10 HZ_NZ_
«Flight Control WARN_PIM
D_AIU_20_HZ_INPUT_PIM PERFORM_OWS 10 HZ
«Avionics | nterface Unit :Isdojrél'ols Clearing of OWS Recall | D_OWS 20 HZ_PIM |
D_GEN_10 HZ UNPACK_PIM
~Aircraft Sores PERFORM_OWS_10 HZ_NZ_
D_GEN_20_HZ_UNPACK_PIM WARN
*Discretes «NZ Allowable & Warning Ratio
D_HUD_CONTROL_PIM Limits
*AOA Limit
D_INS 20 HZ_INPUT_PIM PERFORM OWS 20 HZ
*INS Data *Compare Loadsto Limits & Post
D_MPDP_20 HZ_INPUT_PIM Restilts
*MPDP QOutputs
D_PACS 20 HZ_INPUT_PIM
*PACS Outputs
_PACS CMBT_TRNG_BUFFER
*Nuclear Training Stores
X_EXECUTIVE_CONTROL
*Ada Executive Outputs

Figure 15. OWS Structure

After several potential wrapper approaches were explored, the resulting top-level wrapper design
employed a combination of C++ and Ada95 code. The C++ components communicate with Host C++
OFP, and the Ada components are used to communicate with the legacy OWS Ada83. One objective that
was satisfied by this approach was to leave both the new host and OWS legacy code unchanged. An
example of the data transforms and conversions that are necessary in the wrapper implementation for one
of the OWS functions is shown in the following figure.

1

C++ i Ada
7 COSSI -~y oo Wrapper oo . OWS -
i . . Y
h (- I
| [! .
| i H Intermediate E | Oows
| . Input PIM P Input PIM
i i Lo
i Vo Vo
| L N
| Is_IPE_Installed HE
1 e P
i T ! Vo
; P : o
| - o
1 Vo Intermediate I ows
| [Output PIM I Output PIM
: P o
| P P
i o b
H [Display_Data](—7—,—[Get_Data]1— —
i Vo Lo
| o N

Figure 16. Typical Data Transform for Preliminary Wrapper Design

The remainder of this section discusses detailed solutions for each of the wrapper services to this top-level
design. The first subsection discusses initialization issues including Ada elaboration. The second
subsection discusses scheduling issues associated with execution of the OWS Functional Threads under
the Event Sequencer chosen for the Object Oriented COFP. The next subsection addresses Process and
Data Synchronization. For the OWS demonstration, there was little demand in this area. The next

20

subsection addresses shared data access. This was the major focus of the OWS demonstration and
much detail regarding the solution is presented. Finally External Data Access is discussed.

4.3.1 Wrapper Initialization

The OWS Demonstration presented two initialization challenges: Ada Elaboration and Execution of OWS
First Pass Logic. Elaboration is needed to initialize the various Ada OWS PIMs, which are incorporated
inside the wrapper. Using WrapidH, an Ada INITIALIZE.PIM procedure was created to Elaborate the
PIMs used by the OWS logic. In addition, Ada logic was created to initialize flags, which needed to be
stubbed, as discussed under the topic “Access required from functions not yet available in the COFP “
below. This stub initialization logic was also incorporated into the Ada INITIALIZE.PIM procedure. The
C++ procedure, which executes the OWS 20HZ logic, was designed to call the Ada initialization procedure
on the first execution pass.

4.3.2 Wrapper Control
The F-15 IULS Demonstration required integrating three legacy functional threads,
PERFORM_OWS_10_HZ, PERFORM_OWS_10_HZNZ_WARN, and PERFORM_OWS 20 HZ into the
Event Sequencer structure used for controlling the execution of objects in the COFP. Factors considered
in de3|gn|ng the Wrapper Control included:

Tolerances in the rate at which each functional thread is executed

Tolerances in the latency of execution of each thread

Pre-requisites for execution of each task

Input data coherency requirements

Output data coherency and dependency requirements.

4.3.2.1 Tolerances In the Rate At Which Each Functional Thread Is Executed

Program designs generally have a minimum rate at which a thread must be executed but rarely have a
hard limit on the maximum rate. In general, the maximum rate is limited only to maintain computer resource
margins. A design in which the minimum rate is guaranteed and the maximum rate is allowed to rise, given
excess resource reserves is generally acceptable and is even desirable if the increased rate of execution
tends to improve the overall utility of the system.

For the IULS OWS Demonstration, analysis of the legacy code indicated that the true scheduling driver for
the OWS_10 HZ and OWS_10 HZ NZ WARN tasks is that they execute at least 10 times per second but
a higher rate would be acceptable. The 10 hertz rate was originally chosen to enable timely execution
subsequent to a change in vehicle configuration such as release of stores or weight off wheels. Since the
computations involved are relatively insensitive to vehicle dynamics, minimizing the delay between sensor
inputs and OWS computations was not a design driver. The OWS_20 HZ rate was selected to take
advantage of the rate of input of CAE Normal Acceleration. Again maintaining the exact rate was not seen
as critical. A 20 HZ rate ensures that the peak loads measured by OWS are representative of aircraft
loading. This is important from both a flight safety and maintenance iewpoint. However, capturing the
exact peak load is not considered critical. Again, a 20 HZ or higher rate of execution was deemed
acceptable.

4.3.2.2 Tolerances In The Latency Of Execution Of Each Thread

Older designs, optimized for efficiency, sometimes utilize numerical integration techniques in which the time
interval has been “hard wired” into the code or into numerical coefficients. In these designs, inaccuracies in
the execution interval produce proportional errors in the integration accuracy. Most modern designs are
tolerant to variations in the interval between thread executions. Analysis of the OWS design indicated that
there is negligible sensitivity to variations in the period between thread execution.

4.3.2.3 Pre-requisites For Execution Of Each Task

In general, it is desirable to have a thread execute when a coherent new set of inputs becomes available.
This can be accommodated by delaying initiation of the thread until all requisite inputs are available or by
employing logic which delays portions of the execution until the requisite inputs become available. In the
OWS design, the task structure was developed to ensure that requisite critical coherent data was available
before initiation of each thread. For the OWS_10 HZ task, current INS data is required as well as the
most recent Air Vehicle Configuration (stores). The OWS_10 HZ NZ WARN thread should execute when

21

the latest INS, AFCS and ADP data are available. It should also execute after the OWS_10_ HZ thread is
complete. The OWS_20 HZ task should also execute when the latest INS, AFCS and ADP data are
available. It should also follow the OWS_10 HZ NZ WARN thread.

4.3.2.4 Output Data Coherency And Dependency Requirements

Execution control may also be dictated by the needs of other threads, which use the outputs of the thread
being scheduled. In the OWS case, the outputs drive displays and cockpit voice. The Ada OFP design is
such that the OWS processing is completed before the display and voice generation processing is entered
and the display and voice generation complete before the start of the next OWS cycle. Since there is no
possibility of the display or voice generation functions interrupting the OWS threads or vice versa, output
data coherency is not an issue. However, in the event driven executive scheme used for the COFP, it
could become an issue if the display generation were partially complete when the requisite events for the
next execution of an OWS thread were satisfied. In this case the display and/or voice generation function
might be interrupted after a partial output and complete with refreshed (non-coherent) data. For the
demonstration, this was considered to be of such low probability that it was neglected. In an eventual
operational event-driven OFP implementation, it might be best to implement a display complete event as
part of the OWS thread trigger mechanism. Again significant systems engineering effort would be required
before such a design would be pursued.

4.3.2.5 Control Implementation for the IULS Demonstration

The Wrapper Execution Control design chosen for the IULS demonstration featured the following:
The PERFORM_OWS_10 HZ Wrapper thread should be executed whenever an INS event occurs.
Because the COFP hardware/software configuration used for the demonstration had no capability for
sensing changes in the aircraft external stores configuration, all stores data for the demonstration were
stubbed, and therefore no attempt was made to tie execution of this task to changes in the external
stores configuration.
The PERFORM_OWS_10 HZ NZ WARN_Wrapper should be executed whenever an INS, AFCS and
ADCP event has occurred and the PERFORM_OWS_10 HZ_ Wrapper has completed.
The PERFORM_OWS_20 HZ Wrapper should be executed whenever an INS, AFCS and ADCP event
has occurred and the PERFORM_OWS_10 HZ NZ WARN Wrapper has completed.

PERFORM_OWS 20 HZ Wrapper executes each time PERFORM_OWS 10 HZ NZ WARN Wrapper
completes and both of the 10 HZ tasks execute at a higher rate than in the Ada design. No attempt was
made to reduce the rate of execution of any task in order to conserve computational resources. This
design is considered adequate for the purpose of the demonstration. However, for an operational
capability, a more detailed systems engineering effort would be required to consider:

Computational load associated with each task

Computational resource allocation to OWS processing

True requirements regarding minimum rate of execution of each task and maximum latency between

requisite inputs and associated OWS task completion.

Ultimately a design that reduces the rate of execution of each of the OWS tasks, might be preferred. This
could be accommodated through introduction of events, which occur based on periodicity or by logic which
executes the OWS 10 HZ threads on a subset of the INS events. Analysis of and response to these types
of issues were considered beyond the scope of the IULS Program. They are common to all event-oriented
scheduling schema including new starts as well as attempts to utilize legacy software.

4.3.3 Process And Data Synchronization

For the OWS wrapper demonstration, there were no Interrupts or Clock Service issues to deal with. Data
synchronization issues were easily addresed under the COFP Event Structure. As related in the previous
section, availability of coherent sets of INS, AFCS and ADCP data was used to trigger the appropriate
OWS threads. Task 1 analysis of the 15 re-host problem indicated that considerable excess throughput
was available on the COTS process chosen. Given this resource excess, there was no problem
completing OWS processing before the next data input sequence. This excess capacity was confirmed
through system testing executed prior to the flight demonstration.

22

4.3.4 Shared Data Access
Shared data access was by far the most important issue in developing the OWS Demonstration. Shared
data access issues fell into four categories:

Access to data available from COFP elements

Access required from functions not yet available in the COFP

Output of data from the OWS threads back to the COFP

Type conversions

4.3.4.1 Access To data Available From COFP Elements

The first activity executed in designing the OWS Wrapper was the mapping of each element in the OWS
Input PIMs back to an “Accessor” Function on the COFP. This is the most complex and laborious task in
wrapper design. All of the OWS inputs and outputs must be accounted-for and analyzed by an OWS
domain expert. For the case study, an Ada program analyzer/parser was used to list all of the parameters
in the OWS input and output PIMs and in the processing. The tool also provides a list of dependencies —
supporting components in the Legacy OFP that were imported. Each parameter was characterized in
terms of function, format and timing. Parameters that interfaced with the Host were mapped to equivalent
Host parameters and/or marked for unique wrapper component design (transforms, stubs, etc.).

The methodology used to match C++ accessors back to Ada variables was to use utilities such as the Unix
“grep” command to search the COFP Library for matches with Ada variable names or partial names. In
general multiple matches were found and required further analysis to identify which, if any, of the matches
were appropriate. Lessons were learned resulting from this activity. Programming standards used in
developing a new version of software should force a level of consistency in naming standards between
legacy and new versions. This would enable more efficient “key word” searches in order to match required
data to sources. Given an enforced level of naming consistency, a generalized tool could be developed to
automate much of the data matching activity. Unfortunately, naming consistency from the Ada OFP to the
COFP was not required, making the generation of the data map far more laborious. Furthermore, the map
was generated by personnel who were unfamiliar with OWS function, making the process more laborious.
Domain experts were in short supply and were available only to review and finalize the product. Despite
these challenges, the wrapper was developed on a schedule, which preceded the availability of the test
aircraft.

A mapping from the ~15 COFP to the 15 OWS PIMs was developed to document the results of these
searches. An excerpt of the final version is presented in the following table, and the full table is in
Appendix A. This mapping served as the primary requirement for developing the OWS Wrapper. Using
WrapidH, we were able to directly implement these requirements graphically and the requisite code was
automatically generated. Although some effort was spent developing and debugging the WrapidH
capability, the recurring effort involved in converting a similar table into functioning Ada and C++ code will
be minimal. The left-hand column of the table contains the OWS Ada PIM name. The middle column
contains the Ada variable name and Ada type. The right hand column contains the COFP file name and
line number, the access methodology and the return arguments and types.

23

F-15 OWS PIM F-15 COFP

D_ADC_20HZ_INPUT_PIM MACH_NUMBER : Mach; AS5ADP.h(57): const BQualityDouble& GetMach();
type Mach is new Real range - Ex. TheASADP_Ptr->GetMach()
20.0 .. 20.0; Returns reference to BqualityDouble — GetValue() returns

mach/double/dimensionless, IsValid() returns bool.

D_ADC_20HZ_INPUT_PIM LOCAL_ANGLE_OF_ATTACK | A5ADP.h(56): const BAnglePiOver2&

: Cockpit_Units; GetLocalAngleOfAttack();

type Cockpit_Units is new Real; | Ex. TheASADP_Ptr_-> GetLocalAngleOfAttack().GetAngle()
Returns reference to BAnglePiOver2 —

BaglePiOver2 derived from class Bangles — GetAngle() returns
Local Angle Of Attack/double/radians limited to —Pi/2 to Pi/2.

D_ADC_20HZ_INPUT_PIM LOCAL_ANGLE_OF_ATTACK | A5ADP.h(56): const BAnglePiOver2&

_ GetLocalAngleOfAttack();

VALID : Boolean; Ex. TheA5ADP_Ptr_-> GetLocalAngleOfAttack().IsValid()
Returns reference to BAnglePiOver2 —

BaglePiOver2 derived from class Bangles -- IsValid() returns
bool

Table 6. OWS/COFP Mapping

The top-level data processing design is illustrated in the following figure, with the black or dark lines
showing the data flow between host, wrapper, and legacy OWS. As OWS processes are being run they
require data which has been produced in the Host and is generally pulled by the wrapper. This data must
be converted to a form required by OWS input PIMs. The data that is computed by OWS is in its output
PIMs and if needed by the Host, is pulled and converted/equivalenced by the wrapper, then pulled by the
Host when it is needed for display at the end of the processing frame.

Host F-15 Wrapper Rehosted F-15
OO0 C++ C++ I Ada9s OWS Ada83
Events (20 Hz, 10 Hz) } ’ Consume Events ... l

T
A 4
20 Hz & 10 Hz Process Q OWS Transfer To Ada

|
Initialize Wrapper Copy ... Inputs I\
Perform ... Wrappers Perform ... OWS
A5 Avionics Interfaces 9/4 Get Data ... l

|

Get Data ... |
|

|

Data ... ll }

|

|

|

| |
Event Channel @ OWS Events :

| |

|

|

|

|

|

|

|

[Copy ... Outputs]

\
Process Interface Msg

Process Interface Msg OWS Input PIMs

Data

Data Data

\1 Stub/Transform Data | Stub/Transform Data I’

OWS 20 Hz ¥

Perform OWS

OWS10Hz& 10HzZW
Perform OWS

|
|
|
|
|
|
(] ! (]
|
}
|
|
|

Auto-coded C++

Operator (Displays)

[Data ... }

OWS Output PIMs
Data

{ Data }

{ Data }

|
|
|
|
|
|
|
| Auto-coded Ada95
|
|
|
|
|
I
|

|
|
Process Interface Msg I Process Interface Msg
!
|

Figure 17. OWS Wrapper Architecture

4.3.4.2 Access Required From Functions Not Yet Available In COFP

The effort to map the OWS Ada PIM variables to COFP accessor functions yielded numerous variables for
which no accessor exists. In most cases this was due to the nature of the COFP, i.e. it is a partial
implementation of the F-15 requirements. For these cases, stub values were specified for use in the
demonstration. most stubs were implemented as fixed values. However, some “stubs” deal with
peculiarities of the OWS Flight Test configuration. During the test, it was necessary to trigger numerous
overload situations. Obviously, flight safety concerns dictate that the aircraft not be stressed in this way.
The solution was to “lie” to the software. The aircraft flown was a clean configuration, i.e., no external
stores, no fuel in the conformal tanks (CFTs) and fuel weight decreasing as the flight progresses (takeoff
was with full fuel). However, the software was told that external stores were present, the CFTs were fully

24

fueled and the aircraft internal fuel weight was constant. Since it was desired to test several points in the
flight envelope, the PACS Training Mode capability was used to set various “simulated” stores
configurations during the flight. In this mode the crew can alter the stores configuration of each wing
station and the software will add in the eight of the “simulated” bomb and rack load. It was also desired to
vary the fuel load as part of the test point matrix. In response the wrapper was designed to extract the
fuel load based on pilot inputs through the cockpit display scratch-pad. In the remaining cases, system
design decisions made for the COFP resulted in an implementation for which there is no direct output
available to satisfy the OWS need. For these cases, logic was implemented to convert COFP parameters
into the information required by the OWS code. An example of this is the logic implemented to determine if
an IPE Engine is installed. The logic implemented checks to see if the right engine is type PW229 and the
left engine is type PW229. If both are PW229, “IPE Engine Installed” is set true, otherwise it is false.
Another example is the use of INS acceleration in place of CAU Normal Acceleration (CAU inputs were not
available in the demo configuration. The following table, in format similar to the previous, presents a
sample of the results of this "stubbing” process including the pilot stores and fuel weight entry capabilities.
The full table is in Appendix B.

F-15 OWS PIM

F-15 COFP

D_GEN_10HZ_UNPACK_P!I
M

BRU_STATION_WEIGHT :
D_Ows_Types.Sta_2 8 5 Array_Type;
type Sta_2_8_5_Array_Type is array

Rcft);
type Pounds is new Real;

Not available in demo configuration —
Use PACS training Capability

If (ABUPACS_ Station.stations[STA_X]
.merPresent) Stub to
BRU_STATION_WEIGHT(STA-X) =0
Ibs, else
BRU_STATION_WEIGHT(STA-X) =
524.0 Ibs for X=2,5,8

D_GEN_10HZ_UNPACK_P!I
M

CFT_STATUS_FLAG : Cft_Type;
type Cft_Type is (None, Cft 4, Cft 3);

Not available in demo configuration —
Stub to CFT_STATUS FLAG = CFT 4.

D_GEN_10HZ_UNPACK_P!I
M

AG_WEAPON_COUNT :
D_Ows_Types.Ag_Weapon_Count_Array_Type;
type Ag_Weapon_Count_Array_Type is

Rcft);
type Integer_Short is range -32768 .. 32767,

Not available in demo configuration —
Use PACS training Capability

Stub to
AG_WEAPON_COUNT(STA_X) =
AS5UPACS_Stations.stations[STA_X]
.wpnCount for X=2,5,8

D_GEN_10HZ_UNPACK_P!I
M

LAUNCHER_WEIGHT :
D_Ows_Types.Sta_2_8_Array_Type;
type Sta_2_8 Array_Type is array

Rcft);
type Pounds is new Real;

Not available in demo configuration —
Stub to LAUNCHER_WEIGHT(STA_2)
= LAUNCHER_WEIGHT(STA_8)=0
Ibs. Note
LAUNCHER_WEIGHT(STA_5) is not
defined.

D_GEN_10HZ_UNPACK_PI
M

PYLON_WEIGHT :
D_Ows_Types.Sta_2_8_5_ Array_Type;
Type Sta_2 8 5 Array_Type is array

Rcft);
Type Pounds is new Real;

Not available in demo configuration —
Use PACS training Capability

If (theASUPACS_ptr-
>GetPylonPresentSta2()) Stub to
PYLON_WEIGHT(STA_2) = 500.0;
Else PYLON_WEIGHT(STA_2) =0.0;
if (theABUPACS_ptr-
>GetPylonPresentSta5()) Stub to
PYLON_WEIGHT(STA_5) = 300.0;
Else PYLON_WEIGHT(STA_5) =0.0;
if (theASUPACS_ptr-
>GetPylonPresentSta8()) Stub to
PYLON_WEIGHT(STA_8) = 500.0;
Else PYLON_WEIGHT(STA_8) =0.0;

Table 7. OWS/COFP Stubs

4.3.4.3 Output Of Data From OWS Threads Back To COFP

The OWS functions provide overload-warning indications to the crew. Outputs from the OWS threads
back to elements of the COFP drive these displays. For the demonstration effort was required to convert
the Ada output back to the C++ format, to implement the requisite OWS displays and voice warnings. The

25

displays were implemented using the VAPS tools. The remaining output capabilities were developed using
WrapidH.

4.3.4.4 Type Conversions
Type conversion from C++ to Ada was required for the parameters passed to the Ada threads and from
Ada to C++ for the display and voice warning parameters. The bulk of the required conversions were
implemented using the WrapidH tool to access previously developed type conversions. This process was
straight forward and required little if any re-coding. Two problems arose. The first and most significant
problem was the conversion of arrays. There is no capability to pass an array by value to or from C++.
C++ treats arrays through pointers. Extracting or supplying pointers is not compatible with Ada principals.
The only solution to this problem was to develop routines, which passed arrays back and forth on an
element by element basis. The second problem was an Ada exception, which was experienced in the
laboratory test environment. The problem occurred when an Angle-of-Attack value, which was below the
Ada type specification lower limit, was passed from the C++ to the Ada. Systems Engineering analysts
decided that the value could not be experienced in a closed loop flight environment and the problem was
dispositioned as unrealistic. Systems engineering considered incorporation of logic on the C++ side to limit
the value passed to the Ada side, but decided it would offer no benefit in terms of system robustness and
safety.

4.3.5 External Data Access

The only external data access involved in the modifications required for the demonstration was the display
and voice warning output. Normally, in a complete upgraded hardware suite, the OWS warnings would be
provided by a set of tones, and the wrapper would have been constructed to provide the requisite data
automatically. However, because the existing hardware did not support this function, an alternative method
using the "low altitude - pull up" voice warning caution was used. The voice warning output was hand-coded
in C++ and integrated into the wrapper using WrapidH. The voice warning was needed to provide a good
distinct immediate feedback to the crew that the OWS logic was working satisfactorily. The display drivers
were developed using the VAPS GUI Tool-set and hand integrated into the OFP.

4.4 Development Environment
The ideal development environment for the OWS Demonstration would accommodate both C++ and Ada
for both Desktop (PC) and target (PowerPC). Unfortunately, at the time of initiation of the OWS
Demonstration effort, no such integrated environment existed. Green Hill Ada MULTI provided the requisite
capabilities for the PowerPC target but not the Desktop PC. For the Desktop, Green Hills MULTI was
capable of developing the Ada object code only, i.e. it had no Desktop C++ capability. The development
environment in use for the COFP was Microsoft Visual C++ Developers Studio. It offered capabilities to
develop and debug Desktop PC C++ applications and to integrate C++ and Ada object code into a desktop
executable. The Microsoft tool had the added advantage that it was widely available in the Boeing Bold
Stroke organization and numerous developers were familiar with it. It did not offer an integrated de-
bugging environment for the integrated object code. The decision boiled down to using the Microsoft
environment for the Desktop effort or using the Green Hills environment and going directly to the target
machine. There were numerous risks associated with this second approach:
- The Green Hills product was less proven than the Microsoft product

Few developers were familiar with the Green Hills product

Target machine availability would be a serious bottleneck

Plans called for using the Desktop Test Environment (DTE) for initial debugging of the integrated

product — DTE integrated with the development environment was not available for the target

processor.

Of necessity, the decision was made to use the Microsoft tools for completion of the Desktop effort and
transition to the Green Hills tools for the target machine. Although no other viable path existed, the lack of
an integrated de-bugging environment proved to be extremely time-consuming. Since the bulk of the OWS
problem is the importing of the C++ data into the Ada threads, debugging is almost completely done on the
Ada side. Because there was no integrated environment, debugging on the Ada side required
incorporation of diagnostic code, recompilation and extensive data analysis. Needless to say, this was a
time consuming process, but was unavoidable. In future efforts every effort should be made to ensure that
an integrated environment is available for each phase of the development.

26

4.5 Wrapper Implementation

The OWS Wrapper was developed using the IULS Wrapper Toolset (WrapidH) which was created for the
IULS Program using the Honeywell Domain Modeling Environment (DoME), as depicted in the following
figure.

Shelf Components

Wrapper Architecture Wrapper Library

Domain Modeling Environment e
(Honeywell's DoOME)
Architecture

00 Get/Put
Wrapper Toolset & Design
T00TIO00II0101010101 (WrapidH) Analyzer

Editor
010101010010111010010011
010001010100100110101010
111110001001010010101110
100010100101010110101010
0101010101001010101010

Legacy Software

: Auto-code I Test
Proposed New Generator Generator

System Document Upgraded Software
Generator With Wrapped Legacy

Emulator

Graphical
Design

1100110001 110101010101010101
01001011101001001101000101010

Design
Databas

01001101010101111100010010100
1010110100010100101010110101
1001010101010010101010101.,

Figure 18. WrapidH Toolset

The software architecture implemented for the demonstration is shown in the following figure. The key
element of this architecture is the IULS Wrapper, which was developed using WrapidH. The IULS
Wrapper contains 407 Source Lines of Code (SLOC) of automatically generated C++ code and 482 SLOC
of automatically generated Ada95 code. The Rehosted OWS software, which was wrapped, contains
7200 SLOC of Ada83.

F-15E New Host IULS Wrapper Rehosted
Avionics F-15 OFP F-15 OWS
00 C++ C++ Adad5 Ada83
Avionics Get Transfer ows
Fuel Load Inputs | Data Data 1 Inputs
INS G’s A A +
\4 A\ 4 ows
Transform Transform X
Processing:
Data Data 10 Hz
10 Hz Warn
SR
HUD 20 Hz
G's *
IETREY V\ Get Display R Data Transfer 3 Oows
Data N Data N Outputs
Head-Down A/
ows
i Auto-coded C++ & Ada95
Display

Figure 19. Upgraded Software Architecture

4.5.1 Build/Modify Wrapper Model

The data and processing components were incorporated into a wrapper software model, “OWS_Wrapper”
using WrapidH. The following figures show a portion of the wrapper model at various levels. The intent in
showing these particular figures is to illustrate a sample string of data and control flow through the model.
The following figure shows the top level of the model — a depiction of the modeled software components in

27

the WrapidH/DOME user interface on a PC/NT Workstation.

‘ BIG-0WS-WRAPPER_DOM [_ O]]

File Edit “iew Lavout Tool: “Window Help

NE|al 5 Zam] 8] =

£
&

[PERFDRM_D'LIUS_'iEI_Hz_‘lI‘U‘rapqu

[PERFDRM_DWSJDHZ_NZ_WAR N_'u'll'rappeq
u
IPEHFDRM_DWS_ZD HZ_iiirappar
[]

[e etliG_CLEAR_EMABLE D_Fmé_a»

eI ~ |

LV O E e

[G etiNFLIGHT_INWVALID_ARMT_DIS L}

[GetmDST_RECENT_DlSPLAY_RATb_}

[GetMDST_RECENT_DISPLAY_F]Z_}

[GetMAX_NEGATIUE_MAGNITUDEJ_Q}

[G ethlfx_FOSITVE_MAGNITUD EL%

[@etmnST_RECENT_DlspLAY_mDE]a%

[GetNZ_F! E EALL_TAEIIJ.E_}

[G etifARHING_RATIO_RECALL_TAB LE__}

7 I _*l;I

ChS Wrapper: <Package instances=

Figure 20. Top Level Wrapper Model

The name of the model is BIG-OWS-WRAPPER.DOM as is indicated in the window label. The wrapper
has an initialization process at the top and three processes to perform on a regular basis that enclose the
legacy processes. The other processes depicted in this figure are run on an as-needed basis including
data access methods used by the Host to “get” the OWS outputs for display and validity flags.

The two processes that will be described in more detail are “PERFORM_OWS_20HZ_ Wrapper” and
“GetMOST_RECENT_DISPLAY_NZ". These processes are scheduled by the Host infrastructure at 20 Hz.
The “PERFORM_OWS_20HZ_Wrapper” process converts data from the Host environment to the Legacy
OWS/Ada environment and then calls processes to be executed in the Ada environment. The second
process “GetMOST_RECENT_DISPLAY_NZ” primarily gets the data that has been generated in the Ada
environment and converts it for the Host environment so that it can be used to display normal acceleration
(“G’s”) on the HUD.

The wrapper designer uses the DOME/WrapidH tool to navigate through the model by point-and-click on
the desired components. Components with a block in the top-right corner have a lower-level model.

28

The next level of the model for the process “PERFORM_OWS_20HZ_Wrapper” is shown in the following
figure.

File Edit Miew Lapout Tools window Help

i A Eaals i

PERFORM_OWS_20HZ Wrapper M=l E3

]
-

te
- A
— | FERFORM_Ols ZIHZ Wirapper
[-
.

e

[

Sub)|Fild
B2 B ICI0E F2 i

mach_yamber
/‘r kvald i
ASADR
L_}“‘-«__N_ang e_oit Attack
Bz vallyDonbk | bocal_3ig k_ot Q&u cc_pm
Geliahe —%—tﬂ

kvalid
IlGetﬂan:C-:-rre-::'eu:ll1 reds e F

V|0

e _3ugke_ot Ftack

———'—_‘br—x
! pres A e _rto
i
!
[raln Dotk !

kvalid

Endig

BCwaiyDorbk” |

Gedialie e El_td

)

Wk @|_stok_brce_ts_1mlk

D_AFC

kit s mal_@Em_pos_k =i

BSAFCS

- ..

| GetlavingEeartamk s up |

et =3k Ak o I: ~
£ | »

=References=

Figure 21. Perform OWS 20HZ Wrapper (Part 1)

The aircraft state data that is required by the OWS input Ada PIMs has been identified, and their
equivalent “C PIM” structures are shown to the right, such as “ADC_C_PIM”". Each required parameter
(such as Mach Number) is shown as an input. The equivalent Host parameters (and their access methods)
have been identified in a Host structure modeled/labeled ASADP (Air Data Process) on the left. The data
is passed through intermediate components (in the center) that convert the data to a different type, convert
the units, or simply assign it (and its validity) to the intermediate storage locations in the * C_PIMs.

29

The lower part of the “PERFORM_OWS_20HZ_Wrapper” model is depicted in the following figure.

shows this process activating another

process called “OWS_20HZ_Transfer TO_ADA”

It

in the

“OWS_20HZ_PIM_TRANSFER package after the required data has been loaded in the input *_ C_PIMs.

PERFORM_OWS_20HZ Wrapper

File Edit Miew layout Tools wWindow

=] E3

Help

al

| L

B
[RTTTrITETrer PO

£ - -
Moite
L A
PERFORM_OWES AIHZ_lEppe |
oy \ [- ';'
=y) B raly Dbk :
% E GE'D.I'ElIE}——_ H
ehvalid :
Sub)| Field i
1
@ - B4 ke P IO 2 !
=l - —
| [T |
! m‘ LB'u‘aIi:I
Tr focal_ang k_ot Steck
— I Kcal_ang k mamﬁ;kki“u o
Bzl bke* | angke_ot atack 1o
- o '
-Gem‘alle —%}_m
ro_correcied pressane_atind:
Getlocals g kOwtack | H
] :
(Getﬂarcc-:-rrectdl’resnre.ﬂ.muae F !
1 fre_angke_or Stoox
GefTries g kOtmiack § L] BAng kP2 |
e —
! press e _Eto
B'u‘all:l} :
i
|
‘SQEIMDDII:-I&‘ :
l".
Eviald Y
L
[}
h
[
L
[= Brding
BCwaiyDorbk” | ;
II
|
Getiahe —T; B al_s i
/!' II
halid I|
k@l stick_trce k1@l
1
BELFCS I \@
- -
| BetandhgGeariandi kUp | | Wt £ mal_mm_pes_k ik
1
et 76 AEHRFANs ! —J:: -
_‘I | 3

=References=

Figure 21. Perform OWS 20HZ Wrapper (Part 1)

30

PERFORM_OWS_20HZ Wrapper =] E3
File Edit “iew Lapout Toolk ‘Window Help

= H S E% 0] 1P]
el T 2 Plh_receue iy ¢ fept — N
s H\@_ : ’

e

?};‘ %: \ 1‘ ya_FE

i
1

Field

yEMl_FE_Dne_priorhy

o_MRDP_C_PIN

Lv|0

Bzl Dbk can womal m@ﬁ
. [Gem‘alle Y MEE‘MI_IEIH
I!—

i 1

bara_lertEl attde @il |

i
T vomal_acoe b s
; - — D_INS C_RIN*
}_ ! oo How_awd e ozt 1alid]
\/] " _'_‘—‘—\—_.____
; |

S50 g KO ke b i

[Gell‘l.lelgitlﬂ.l'l.liee ESTRAIT }

0_GEN_ZOHZ_UNPACK PIN

SAFED_OFF_MEGHT_OFF_WHEELS

b SAFED_OFF_WWEIEHT OFF_]
L SRIME CHEC K DATA_tS SR

L

PACS COMBAT_MODE_MES
§ PACS COMBAT MODE WS
PACS COMBAT_MODE_MES
§ PACS COMBAT MODE WS
PACS COMBAT MODE MILS
L
L
L
L
L

r a I
0_HUD_CONTROL_PIN Dms_mhz:glu_TR.u.NSF ER |

has onbystabbed e bl - 5
"
[D WIS _AIHZ_Trawskr_To_sd
1
SKED_PINM SPIKE_CHEC K_DATA_KS SRIKED " TN Femo T2k .
4
Get INEr g _Rato_Recall_Tak
1 [— i — b PACS COMBAT_MODE MES
EM_1OHZ_UMPAC K PIMCFT_STATUS FLAG
wbbed or the demo. L pacs COMBAT_MODE MES

i S =

]

b ROCS COMBST_MODE MES
b ROCE COMBAT_MODE NS
L ROCS COMBST_MODE NS

Figure 22. Perform OWS 20HZ Wrapper (Part 2)

The following figure shows part of the next level “OWS_20HZ_Transfer_TO_ADA” which basically converts
the data in the *_C_PIMs to the *_ADA_PIMs. Once all of the PIMs have been converted, the Legacy Ada
code to PERFORM_OWS_20HZ can be activated as shown in the ‘D_OWS_20_HZ" package near the
bottom.

31

BBl OWS_20HZ_Transfer_To_Ada I =] E3
File Edit Miew Lapout Tool: Window Help
e EEERN R &
. i SPIRE_CHECF,_UATE,_FS_SRIFEL(U_GEN mH.ﬁ_UNPH_;_K_P;I
Mot V
1
SOFED_OF

i

O_GEN_THZ_C_pmw

Fakd_om_we ikt o wikes b

Field

BUE
V[0

é_ﬁ EN_10HZ_UINRAC K AIMCFT_{

CINES_fie_ Stk

Mert GR_ROTATING_BT_PATTERN j.

e kition_FS2 1 G
|
Radais_To_Degrees |

CFT_STATUS F

GP_ROTATING

P_ROTATING_BIT_PATTERH
1

D_MPDP_THZ_IMPUT_PIN |

D_OWS 20 HE
—_——————¥
| PERFORM Ol 20 HZ

¥ .
S 20 HZ,_(Copy 0 vpe
d_:].

L GRP_ACTIE
L GRP_ASSISHED_TO_AUS 8

J Col_NORMAL ACCELERATION

b LEFT_CFT_FUEL_WEIGHT

b RIGHT_CFT_FUEL_NIEGHT
b TOTAL_FUEL_NEGHT

:[::u

Figure 23. OWS Transfer to Ada

Once the Legacy OWS has been executed the results are copied to the output *_C_PIMs by executing the

process “OWS_20 HZ_ Copy_Outputs”, shown in the following figure at the lowest level of the model.

32

BBl 0wWS 20 HZ Copy Dutputs =] E3
File Edt Miew Lavout Toolz ‘Window Help

8P
o- :
| =

1
]
1
1
I

1
L

ME_NEGATIVE_MAGNTUDE Mac_NEGATIVE MAGNITUDE G
- / \ D_OWS_20_HE_C_RIN-
ke Mo _POSITHE MAGNTUDE & WAy _POSTHWE MAGHITUDE G = =" = "=r=
O ==]
ST RECENT_DISALAVN NOST_RECENT_DESRLAY_NZ——

1 |

| YIO@|F
Tv[0[[Tk

Figure 24. OWS 20 Hz Copy Outputs
Note in the following figure that the variable “MOST_RECENT_DISPLAY_NZ”" is one of the data fields to

be converted. This is the variable needed by the top-level process “GetMOST_RECENT_DISPLAY_NZ" in
the following figure.

33

EetHDET_HEEENT_DISPLA‘r’_HZ)
File Edt Wiew Lavout Tools Window Help

&||l5] 1] ™ =

r al
GethdD ST_RECENT_DISPLAY _NZ

L a Q

=]
[

[J
&
L=
@
]

=

e

o

[L
’.-'

-

YO

<
[} O_0wrs_20_HZ_C_RIhF \
—*

_RECENT_DISP MT_NE/:[;\

result

resukt

-
| | 3

Figure 25. Display NZ

The properties for each model component such as the D OWS 20 HZ C PIM package are
entered/shown in a property inspection window depicted in the following figure. In this case, the package
code does not exist (either imported or on the shelf), and will be generated in Ada and C++. The
package’s description, design rationale, links/cross-references, appearance, and other characteristics are
entered through the window.

34

Package | O] x]
File Edit Wiew

Nﬂme;| D_0WS_20_HZ_C_PIk

Mame | Description | Rationale | Traceshility | Colar | ¥-Refz | Cwerlays | Properies
Implicit:B © True @ Falze
Exists:B ¢ True & Falze

Language:8|1gn

Generate-in-ada: 8 & True © Falze

Generate-inc:@ & True © Falze

Source Path:E

Figure 26. Component Properties

4.5.2 Build/Modify Wrapper Components

Every component type shown in the model has associated source code. These components can be built
within the DOME/WrapidH tool by using the built-in graphical editing tools and property specifications, or
their source code can be imported via the “Tools” menu option. An Ada parser was used to extract
portions of the legacy VCC OFP containing OWS-relevant source code into a representation that could be
loaded onto DOME and processed by WrapidH.

The data and control transforms were coded by hand, or auto-coded by the WrapidH tool from their type
and graphical specifications. The stubs were hand-coded. Future editions of the WrapidH tool will be able
to model and auto-code more of these components. All software components that were developed for the
case study were added to the Wrapper Library and are available to future users of the toolset via the
Shelf.

4.5.3 Generate Wrapper Code
The following figure contains the C++ source code generated by WrapidH for the “OWS_20Hz_C_PIM".

35

!
File generated by WrapidH, version 1.3
!

#indef D_OWS_20_HZ_C_PIM_h
#define D_OWS_20_HZ_C PIM_h 1
#include "INTERFACES.C.h"
#include "D_OWS_TYPES.h"

typedef struct {
double MAX_POSITIVE_MAGNITUDE_G;
double MAX_NEGATIVE_MAGNITUDE_G;
double MOST_RECENT_DISPLAY_NZ;
double MOST_RECENT_DISPLAY_RATIO;
RECALL_DATA_COMPONENT_TYPE MOST_RECENT_DISPLAY_INDEX;

}D_OWS_20_HZ_C_PIM_TYPE;
extern "C" {
extern D_OWS_20_HZ_C_PIM_TYPE OWS_20_HZ_C_PIM;

k%
#endif

Figure 27. Component Code

The following figure depicts the WrapidH code generating process for the updated OFP that combines
legacy, wrapper and new Host components. The key ingredient in the process is the Wrapper Design
model that is an output of the Wrapper Design Step. For the OWS study several iterations of this process
were necessary since this was one of the first uses of WrapidH on a large software system. Tool features
and refinements were added during each wrapper design iteration.

Design Wrappe
Tool =

Design

Legacy & Wrapper ﬁ N S .
Components

| Host

Figure 28. Generate Wrapper Code

36

A sample of the C++ code listing (file OWS_Wrapper.cpp) that is called from the Host interface is shown in
Appendix C. This code contains the functions “GetMOST_RECENT _DISPLAY_ NZ" and
“PERFORM_OWS_20HZ_Wrapper”. Also note that the function “OWS_20HZ PIM_TRANSFER
OWS_20HZ_Transfer_To_Ada” is called from within the function “PERFORM_OWS_20HZ_Wrapper”.

The Ada95 code listing generated by WrapidH, OWS_20Hz_PIM_TRANSFER.ada, is contained in
Appendix D. It includes the procedures OWS_20HZ_Transfer_To_Ada, the PRAGMA to export Ada to C,
and the procedure OWS_20 HZ Copy_Outputs.

4.5.4 Link With OFP

The legacy OWS code and new Wrapper code were compiled and linked with the Host OFP code in the
Boeing K15 Desktop Test Environment (DTE) on a PC/NT Workstation for wrapper evaluation and initial
software integration and testing. Microsoft Visual C++ and Green Hills Ada MULTI for Pentium/Windows
were employed. An ensemble of test cases was extracted from the original set of OWS verification
procedures. Test cases were chosen to exercise all elements of the OWS Wrapper and covered all
demonstration test points. A significant advantage of reclaiming legacy code is that code integrity is
maintained. It is not necessary to verify every test condition considered in the original verification plan
because the legacy code performs identically with the original implementation. This was borne out during
the OWS Wrapper verification process. As expected many problems were encountered. In all cases they
were traced to elements of the wrapper — generally things missing in COFP. No problems were
encountered in the areas controlled by the legacy code.

4.5.5 Evaluate Wrapped System

The goal/purpose of this phase of IULS was to produce wrapper components and a functional OFP that
compiled and ran on the F-15 DTE to evaluate the quality, structure and performance of the WrapidH-
generated software. The WrapidH tool was enhanced and refined based on the results of the initial
passes through the Wrapper Build, Code Generation and Link with the OFP.

When the system was ready for system test and evaluation it was recompiled and linked using Green Hills
Ada MULTI for PowerPC/VxWorks and downloaded to the ADCP’s General Purpose Processor (GPP)
Module in an F-15 Software Test Facility (STF) environment.

The relative sizes of the components (in source lines of code) for the final demonstration and flight test
OFP were:

Component Software Lines of Codes | Total Source Lines

(Not Comment/Blank)
Total OFP (C++ and Ada) 119363 534054
OWS Application (Ada Including PIMs) 7195 23738
Ada Wrapper 482 880
C++ Wrapper 408 811

Table 8. Software Component Size

The average execution times on the ADCP GPP processor card for a 20 Hz frame (50 milliseconds
available) that includes all 20 Hz and 10 Hz processing are shown in the following table. It is noteworthy
that the 20 Hz wrapper uses 7.2 msec / sec and the 10 Hz wrapper uses 1.6 msec/sec. This represents a
total of 8.8 msec/sec for wrapper execution which is less that 1 percent of the available throughput.

Component 20 Hz 10Hz All Tasks /

Tasks (ms) | Tasks (ms) Frame (ms)
Complete OFP (C++ and Ada) 22.49 6.06 34.25
OWS Application (Ada Including PIMs) 0.58 0.78 1.36
Wrapper Application (C++ and Ada) 0.36 0.16 0.52

Table 9. Software Throughput Usage

37

4.6 Test Wrapped System

Three levels of testing were performed to support the laboratory demonstrations and for flight

gualification:

1. Software testing of the OFP was performed in the DTE Workstation and on the ADCP target in the F-
15 Project’s Software Test Facility with functional test scripts. An important aspect of this testing was
to verify the integrity of the processing using software instrumentation such as Wind River Tornadoa .
These tools allow the designer/tester to visualize the detailed execution of each task and processing
frame under normal operation, initialization, and mode transitions (including degradation).

2. The ADCP OFP was functionally tested on an integrated F15 avionics system “hot bench”, in an F-15
Flight Simulator by the F15 Project Pilot and system test personnel, and in an F15E test aircraft on
the ground using standard F-15 Production Test Procedures.

3. Following an F-15 Flight Certification Board review, a flight test of the upgraded OWS functionality
(and the “retention” of baseline Host functionality) took place on 1 December 1999 in F15E1. The
demonstration flight plan called for execution of six, test points. These corresponded to combinations
of three different weapon loads with two different fuel configurations. The test points were selected to
exercise the 85%, 92% and 100% OWS triggers. The Pilot, Weapon Systems Officer and Flight Test
Engineer reported successful test results. In order to test the OWS in-flight without actually stressing
the airframe under excessive G’s, the weapon and fuel load inputs to the OWS processing were
manually set by the aircrew through the Up Front Control Keyboard to establish the test points for a
fully loaded flight scenario. Using these sets of calibrated weight input, the OWS computed and
reported all warnings and overload factors accurately on the cockpit displays as the aircraft
maneuvered.

4.7 F-15 Demonstration Summary

The F-15 demonstration thoroughly validated the IULS rehost process and toolset. Operationally the
demonstration received enthusiastic endorsement from the flight crew who referred to it as a “Home Run”
in the post flight debrief. The in-flight performance was 100% in agreement with the a priori estimates
matching all six test points, exactly. The WrapidH tool proved to be extremely valuable in developing the
wrapper design and the automated code generator worked as expected in both the Ada and C++ domains.
As predicted considerable domain expertise was required to develop the wrapper. However, the bulk of
this work was performed by IULS engineers who initially had no familiarity with the heritage code. These
engineers were able to readily understand the legacy Ada and COFP C++ to the extent required to support
wrapper design and system de-bug. Wrapper testing confirmed the prediction that wrapped code integrity
would be intact — no problems were detected in which wrapped code operation was an issue.
Measurement of wrapped system performance confirmed that the automatically generated code was
efficient, requiring less than 1 percent of the available system throughput. This also confirmed the Task 1
system modeling which had predicted system throughput was more than adequate for the demonstration
requirements.

Probably the only negative of the demonstration resulted from changes in the F15 customer’s program
plan, which occurred late in the demonstration effort. The OWS demonstration was designed to aid in the
transition from an Ada OFP to a C++ OFP. This was in accordance with the customer roadmap at the
time the demonstration was definitized. The customer had planned to transition the wrapped OWS
software as tested which would have decreased the source lines of code to be developed by
approximately 7000. In addition, the customer was poised to use the wrapper tool in lieu of re-engineering
several other OFP functions to OO C++ pending success of the IULS demonstration. These included the
GCWS (ground collision warning system) and ZAP (launch zones) and totaled over 25,000 lines of
additional code that would have been wrapped vice re-engineered.

Because of funding priorities, the 15 SPO subsequently decided to continue with the Ada OFP as the
baseline rather than transitioning to the C++ baseline. Because of this decision the wrapped OWS
software will not transition to an operational capability. However, it will continue to support technology
demonstrations and is the baseline for the Weapon System Open Architecture (WSOA) demonstration,
which is in development.

The IULS F-15 technology demonstration was an unmitigated success and received a letter of

endorsement from the F-15 program along with press coverage in Aviation Week magazine (Aerobytes, 21

Feb 2000) and other trade journals. It demonstrated the utility of the automatic wrapper generation
38

process. Whilst the seminal F-15 example selected for our demo emphasized wrapping legacy Ada
components into a C++ OFP, IULS technology is also directly applicable to the reverse case - wrapping
C++ components into an Ada OFP. This specific technique may be directly applicable in the WSOA
demonstration as we work to transition C++ image processing and display software to the Ada Suite 5

OFP.

39

5 C-17 IULS Demonstration

The requirement for IULS Task 2 was a realistic demonstration of the application of the IULS tools and
processes to a realistic legacy avionics domain — the goal was to execute two demonstrations. An F15
demonstration was the first priority and the initial focus of Task 2. The OWS Demonstration, described
above, was chosen and the demonstration plan was definitized. Because the flight demonstration assets
were made available without charge to the IULS program, sufficient funding remained to execute a second
demonstration. Since the F-15 OWS demonstration confirmed the Rehost approach, and to a limited
extent the Hybrid approach, the goal was to find an application in which emulation was appropriate. The
C-17 program, which had outgrown the capabilities of its baseline 1750A Avionics Architecture was
identified as the best candidate for transitioning IULS emulation techniques.

5.1 Emulator Framework

An upgrade technique that uses an ISA emulator employs a subset of the wrapper components. The
emulation architecture is illustrated in the following figure. The ISA emulator (here shown as a software
task) implements the legacy ISA state machine. The emulator program interfaces with the system
thorough the wrapper services. The Target Memory Space is a binary load image of the legacy OFP. The
basic features and elements of an emulator wrapper are the following:

Wrapper control - the wrapper process executes as a task of the host Executive or RTOS
Emulator initialization - loads and initiates the OFP image.
Process and data synchronization

Interrupts and Synchronization

Clock services

Legacy “system” reset
Shared data access

“Peek” into legacy memory space

“Poke” or change legacy memory space.
External data access

Input handler

Output handler

Data reformatting
Legacy machine state vector

Virtual switches and discrete signals.

Restart cycling

Checkpoint and test instrumentation

Wrapper Layers

Figure 29. Emulator Architecture

5.1.1 Emulator Trade Study

Emulation became a useful technology in the late 1960's. Thus, the market is mature and product offerings
are reasonably well understood. The following trade study was performed in the IULS Task 1 period. The
study represents a wide cross section of the available commercially available products. Products were

40

selected for the availability of a 1750A ISA product or a product easily modifiable to the 1750A ISA. The
vendors and products considered in the trade study were:

Vendor Product
CCT - Anaheim, CA Firmware processor emulator of the AP-101 A-6 mission processor
Visicom - San Diego, CA Emulators of UYK-20, UYK-7, UYK-43 processors. Tightly coded

machine language emulator on a commercial processor, bridge for
NTDS 1/O card set

CPU Technology - Hardware emulator of 1750 ISA. Product incorporates MIPS R3000
San Diego, CA core as additional ISA choice. Chip emphasis on throughput.
Northrop-Grumman - Pico Software emulator of B-2 1750 variant (approx. 1 MIP). Demonstrated
Rivera, CA on COTS processor board, COTS /O card set

TRW - Dayton, OH Software emulator of 1750 ISA. COTS processor host (PowerPC),

technically similar to Northrop-Grumman

Table 10. Emulator Candidates

The trade issues that were considered in the study emphasized the flexibility and migration capability of the
product. These evaluation factors are subjective parameters. The selection of best and marginal
examples for each factor was based on information provided by the vendors. In some cases there was
little current information provided by the vendor. In these cases GDIS relied on recent experience with the
product.

The evaluation criteria selected for the trade study were as followed:

1. Cost to correct latent errors.
2. Intersection with mainstream
Reacting to change in the mainstream.
3. Migration path options
Can the product be used as a Rehost platform?
4. Cost to change host platform
Any custom design required?
5. Emulation fidelity index
Ability to avoid OFP modification.

Item 1 refers to the cost to correct any error in the legacy state machine (ISA emulator). A software or
firmware emulator implementation is less costly to modify than a hardware implementation. Items 2 and 3
recognize that the legacy OFP may be eventually be migrated to a COTS processor (similar to the Rehost
option) at some point in the future. An emulation option that is hosted on a mainstream COTS processor in
a “popular” language is preferred over a design that includes a high level of optimization. In addition, a
portable emulation implementation (in a language such as C++) is superior to other choices. Item 4 favors
the use of off the shelf microprocessors as opposed to custom devices. That is, the COTS processor will
change over time (typically in 18 to 24 month cycles) and if any custom design is required (gate array,
FGA, etc.) to implement the emulation engine then that design is less desirable. Item 5 recognizes that
some technology may be superior in addressing the “last” nanosecond of fidelity. This factor is important,
but it is also a trade issue. The trade-off factor is the cost of potentially modifying a small portion of the
legacy OFP relative to all other factors.

A summary of the trade study results are presented below:

41

Criteria Preferred Product Product Barriers
1. Costto modify | Software emulator: TRW, Northrop- | Firmware emulator: CCT

product Grumman, Visicom Hardware emulator: CPU Tech
2. Intersection C software on COTS: TRW, Northrop- | Custom implementation: CCT, CPU
with mainstream Grumman Tech

3. Migration path | COTS board set: TRW, Northrop- | No commercial path: CCT, CPU Tech
Grumman, Visicom
4. Costtochange | No known custom designs: TRW, | Custom device: CPU Tech
host Northrop-Grumman
5. Emulation Hardware implementation: CPU tech, | Software on COTS: TRW, Northrop-
fidelity CCT Grumman, Visicom

Table 11. Emulator Trade Study

5.1.2 Emulator Strawman Architecture

A strawman architecture for an emulator based upgrade system is shown below. This hardware
configuration reflects the COTS class of embedded processing systems at completion of IULS Task 1.
The primary elements are a single board computer module (or modules), one or more primarily 1/0
modules (possibly incorporating a processor and kernel OS), and a backplane bus (VME64 in this
example). The architecture allows for the distribution of wrapper services across the various modules.
The backplane bus and distributed architecture are critical factors in the process of designing a real-time,
embedded emulation engine implemented upgrade for an application such as the C-17 APM or CCU.
These items were addressed in the modeling and simulation phase on Task 1.

CPU Target /0
_____Initialize. Memory Module(s)
Space
Boot/Debug/!
Emulator

Events Program
Sync/Clock/I-Of 1/0 Data Flow
Controls/Reset I/0 Data Flow

_________________ Drivers/Reformat
Drivers/Reformat
OS Kernel Backplane Bus Interface Kernel

VMEDbus
Figure 30. Emulator Strawman Architecture

5.1.3 Emulation Environment

Wrapper services for an emulation environment are primarily concerned with interfacing a software task
(the ISA emulator program) with a hardware configuration and the RTOS being used (e.g., VXWorks on a
PowerPC COTS board). Additional services are provided within the wrapper environment to accomplish
the following:

1. Provide an interface to the operator/integrator. The wrapper services provide a “monitor” type
interface and debugging support. The integration of the legacy OFP with the emulator requires a
capability to execute the legacy OFP in a controlled environment.

2. Provide instrumentation capability. Validation of the emulator environment will require the ability to
collect operational data in a bench test mode.

42

3. Incorporate an escape mechanism. The emulator and the wrapper services should include a method
for escape to the native mode of the emulation engine (e.g. PowerPC, VxWorks, etc.). The
requirement is to be able to escape and return in a controlled way.

5.1.4 Emulation Tool Selection
Early in Task 2 (March — 1998) a briefing was given to the IULS Customer and the C-17 SPO. At the time
of the briefing IULS funding had been identified to support a G17 emulation demonstration. An APM
demonstration was recommended and the combined customers were asked to review and comment on the
recommended approach. At this time a tentative decision to acquire the TRW 1750A emulator technology
for the APM upgrade, pending resolution of certain programmatic and technological issues, was briefed.
The selection of the TRW emulator confirmed the Task 1 Emulator Trade Study which indicated that the
TRW tool was a strong candidate for the IULS problem domain. Programmatic issues to be finalized
included:
- Transitionable technology

Availability for open evaluation

Visibility into technology

Terms of license agreement.

Technological issues included:
Interface openness
Availability of emulated application to software access
I/O emulation / access to devices
Demonstration approach.

These issues were analyzed in parallel with the customer evaluation of the recommended APM
demonstration, described below. In all cases, the programmatic and technical issues were resolved in
favor of selecting the TRW tools. As described below, the customers subsequently decided on a CCU
emulation as being in the best interest of both IULS and the G-17. By the time of the redirection of the
demonstration effort had been promulgated into a program plan, the decision to use the TRW emulator
was made. An overview of TRW’s RePLACE Emulator is shown in the following figure.

1/0 mapping
software maps new
COTS interfaces to

legacy interfaces

Other Modules
New COTS I/O Interfaces

Unique cache
optimized code
supports Dual Instruction J
Set Computer (DISC)
environment

1/0 Mapping
M

1/0O Drivers

Native Virtual
Machine Virtual Component Environment

Virtual Component
Environment allows
concurrent execution
of legacy and native
code =

Real Time Operating System

COTS Microprocessor

RePLACE is Performance scaleable!

Figure 31. Overview of TRW’'s RePLACE Emulator

43

5.2 C-17 Avionics

The CG-17 produced by Boeing’s Military Transport Aircraft (MTA) division contained a federated avionics
system that had much in common with combat aircraft including its software domains. It contained two
1553 busses controlled by redundant mission processors - three Missions Computers, which at that time
were to be replaced by two Core Integrated Processors (CIPs). The other major system busses were the
Warning and Cautions bus and the four engine control busses. The pilot and co-pilot had HUDs and multi-
purpose displays whose formats were generally configured by the mission processors; there was no
dedicated display processor.

The table below lists the C-17 avionics subsystems that were subject to frequent updates and were

potential candidates for the demonstration.

Subsystem Major Functions Processor OFP Vendor
Language/Size H/W [SIW
(Words)
Aircraft/Propulsion Data Collects and processes data, 1750A JOVIAL / AL Hamilton-
Management Computer performs signal conditioning, and 108K Standard /
(APM) packs/unpacks data for the Avionics, MTA from HS
Propulsion and Warning and Caution
Busses
Central Aural Warning Generates tones and voice MC6800 C MDA (Monrovia)
Computer System (CAWS) | messages for the aircrew and / MDA-M
loadmaster
Communication Control Distributes audio communications 1750
Unit (CCU) among the radios and crew stations
Core Integrated Processor | Performs mission processing R4400 Ada83/C LM /MDA
(CIP) including navigation, guidance, flight
planning, performance prediction,
aircrew display and control, system
management, communications
management, and database
management
Flight Control Computer Four channel flight control processing 1750 JOVIAL / AL LM /LM
(FCC) to drive the primary control surfaces
and engines.
Mission Computer / Provides alphanumeric data entry and MC68000 AL Delco / Delco
Communications Keyboard | pushbuttons to control Mission
(MCK) Communications Display (MCD)
pages and COMM/NAV controls
Multi-function Display Two color 6x6 cockpit displays for 1750 JOVIAL / AL Honeywell /
(MFD) mission and aircraft performance Honeywell
information
Warning and Caution Collects caution, warning and failure 1750 JOVIAL Litton / Litton
Computer (WAC) information form airframe systems and
formats it for C&D

Table 12. C-17 Subsystems

The APM, CAWS, and WAC were internal signal processing subsystems containing relatively non-volatile
software. However, their processing hardware was becoming obsolete, and software maintenance costs
by subcontractors were increasing due to relatively unique software, languages and software engineering
environments (SEEs). MTA was in the process of bringing their software in-house. There were also
proposals to bring their functionality into the CIP that had spare card slots. However, this architectural
change would require extensive rewiring of the aircraft, which was not practical, until it was forced by other
major functional upgrades. An APM emulation was the original recommendation for an IULS Task2 C-17
demonstration.

The MCK and MFD were typical control/display upgrade candidates. The display head technology (CRTs
and low resolution LCDs) was growing obsolete, the units had limited functionality and/or resources and
software maintenance was expensive. C&D architectural changes, which move to a centralized display
processor and “dumb” display heads, had been proposed.

The CCU was a candidate for replacement by a major upgrade of the C-17 CNI subsystems. As with the
F-15's FCCs, the C-17's FCC hardware had been upgraded, and its low volatility and safety critical

44

software presented complex upgrade retest problems. The CCU was eventually chosen as the target
domain for IULS Task 2 emulation.

The CIP was under development (first flight was scheduled for Summer 1997) to replace the extant
Mission Computers whose hardware was obsolete and overloaded. Software upgrades were going into
both systems in parallel.

A prime consideration in the selection of the avionics component to be used for the IULS demonstration
was potential for transition to an EMD program. Specifically, the IULS goal was not only to demonstrate
technology on a significant avionics upgrade challenge problem, but also to transition the technology to an
emerging EMD opportunity.

5.3 Customer Upgrade Requirement

5.3.1 C-17 APM

The APM was a prime candidate for the demonstration because it represented a domain of avionics
subsystems that does internal data collection and formatting, and bridging of multiplex busses. It was
essentially a state machine similar to the F15’s AlU, but it did more processing for caution and warning
generation including the calculation for a stall warning. It supported interactive maintenance mode formats
on cockpit displays via the CIP, and supplied data to the C-17’s recorders.

Flight Mission Central
Control Computer/ Integrated
Computer Communication Processor
1-4 Keyboard 1&2
1&2 (Or Mission
Computer 1-3)
Avionics Bus
Electronic Aircraft/ Warning
Engine Propulsion And
Control Engine Bus 1-4 Data WACS Bus Caution
1-4 Management Computer
.................................. Computer 1&2
1&2
I— — Muttiplex Bus
I_ Discretes/Analoas
Flight Airborne + Electronic Flight Control System
Data Integrated - Cabin Pressure Controller 1&2
Recorder Data - Environmental Control System
System Aircraft Surfaces

Figure 32. APM Context

Besides the Avionics and Warning And Caution System (WACS) 1553 MUXs, the APM had major serial
interfaces via ARINC 573 with the Aircraft Integrated Data System (AIDS - maintenance data recorder),
and via ARINC 429 with the Electronic Engine Controls (EECs), Flight Test Recorder (FTR), and Cabin
Pressure Sensors/Controllers (CPSs). ARINC 422 channels were used with Engineering/Flight
Development Units for aircraft testing. The APM received many analog sensor inputs for conversion such
as AOA, control surface positions and acceleration; some were used for generating the stall warning
discrete output to the pilot’s and co-pilot’s stick shakers.

The following figure represents the major hardware components of the APM. They were contained on one
“mother board” linked with local common address, memory and control busses.

45

Avionics Bus WACS Bus Test AIDS

General Memory 1553B 1553B ARINC 422 || ARINC 573
Processor || 176K ROM | [- 8K RAM . 8K RAM /0 Output
- 1750A - 32K ROM 2 Channels
- 64K Dual
Port RAM
Memory
Mgmt Unit
|
[Address/
Discrete Discrete Analog ARINC 429] [ARINC 429]| Memory/
Inputs Outputs Inputs Inputs Outputs Control
27Inputs | [6Outputs || 30 AC With| | 8 Channels| [7 Channels
Excitation - 16K RAM
- 6DC

EECs FTR/EECs/CPSs
Figure 33. APM Hardware Configuration

It was a special purpose processor whose architecture was customized for this application. The JOVIAL
OFP including boot program were in the 176K static EEPROM. The 32K EEPROM was used to store
aircraft fault data that was retained at power-off between flights.

Early in Task 2 the IULS customer and the G-17 SPO were briefed on Task 2 plans for the G-17. The
result of the Task 1 analysis for the G-17 avionics system was the recommendation of an APM upgrade
demonstration. Several factors supported this recommendation. The OFP was well designed JOVIAL
from Hamilton standard and Boeing had taken over doing software updates to the system. The G17
project was considering an upgrade to the APM with the objectives of:

Mitigating the hardware obsolescence of the 1750 processor and other components, and replacing the

JOVIAL software and its SEE.

Migrating its features into the CIP as a general integration of federated subsystems.

The Hybrid approach was ruled out since the APM has non-separable obsolete components and a
software architecture that is customized for the hardware configuration. A rehost option was briefed as a
possibility but not the preferred approach. The JOVIAL OFP could be rehosted and a JOVIAL compiler for
the COTS target existed. However, the cost factors for a rehost indicated it was not the best solution. In
addition, the F-15 demonstration was a rehost and better experience with the IULS tools would be
obtained by using a different approach for the C-17.

The recommendation for an APM upgrade demonstration was the emulate approach shown in the following
figure. The APM was the most cost-effective candidate for this approach in the C-17. Its upgrade would
serve as a model for the upgrades of other specialized G-17 and F15 subsystems such as the Avionics
Interface Unit. The Task 1 emulator analysis and modeling/simulation indicated that the approach was
viable in terms of emulator and application resource usage on a COTS processor. A processor system
and avionics test environment would be available for a “hot bench” demonstration at the C-17 engineering
facility. The demonstration was tentatively planned for the first quarter of CY99.

46

Workstation

Green Hills
MULTI
Wind River
Tornado

C-17 Demonstration
Partial Emulation/Rehost On C-17 Avionics Bench
Avionics Bus WACS Bus
A/PDMC
* Candidate Rehost Components racmaaor || Sracon| | s\ || scor
108 64K Dual
. Pot
«Stall Warning e
*Engine Fault Reporting Z T I AN
prms Outputs Inputs Inpls Outputs Control
27Inputs. 6 Outputs. 30 AC With 8 Charlpels 7Channels
Erciaion || 16
FFF]
EECs FTR/EECS/ICPSs
Card Rack
Single Board Computer Discretes 2-1553
110
Legacy Simulation
Component* ARINC 422
Wrapper Emulator ARINC 429
Components ARINC 573 3 X
Wrapper Analog /0 Services | | 1/0 Services |
VMEbus

Figure 34. Planned C-17 APM Demonstration

It was also briefed that the scope of wrapping/emulating the complete A/IPDMC OFP for C-17 was beyond
the IULS program scope/budget. In particular, complete 1/0O emulation (discrete, analog, etc.) would drive
the cost beyond available IULS funding. The recommended demonstration entailed a partial OFP (Engine
Monitoring function) emulation. However, the recommended partial OFP emulation would be sufficient to
assess the TRW emulator technology and verify the IULS process. In addition, the recommended program
was scaleable to a full AAPDMC OFP demonstration, shown in the following figure, should funding become

available in FY99.

A/PDMC avionics Bus wacssus
1

General
Processor

Memory
176K ROM

2K ROM
64K Dual
Pot RAM

Wemory
Mgmt Unit

15538 B!
BKRAM

KR

C-17 Demonstration Option
TRW Replacement Emulation/Rehost On C-17 Avionics Bench

1 I I
Dlsl e/le D\sclrele An!alcg W«Icm ﬁlﬁl
Inguts Outputs Inputs Inputs Outputs
Inputs. 60utputs. 30 AC 8 Channels| 7 Channel:
kg + + I I
EECs FTREECS/ICPSs
Card Rack \A\;\b
Single Boafd Computer Discretes Analogs Serial
Busses
Wrapper A/PDMC 1/O Emulation
Components OFP 2-1553
ARINC 422
Emulator ARINC 429
TRW Wrapper AR|NcI 573
Analog
Framework "W Wrapper Digital 1/0 Services | | 110 Services | | 1/0 Services
Wrapper
Components
VMEbus
Figure 35. Optional C-17 APM Demonstration

47

5.3.2 C-17 CCU
Subsequent evaluation by the C-17 SPO indicated that the Communications Control Unit (CCU) was a
more viable upgrade candidate than the APM. At that time the APM hardware obsolescence problems had
been mitigated for the short term. The SPO believed that the CCU was more likely to be upgraded and
evolve to an open system architecture. Addition of GATM and other new functionality would drive a CCU
upgrade before an APM upgrade. The CCU would provide an interface-rich complex test of emulator
capabilities. The CCU is a well-documented OFP and is functionally separable into essentially independent
major components. The functionally separable nature of the CCU OFP made it an ideal candidate for a
phased approach to upgrade and incremental demonstration of the utility of the emulation approach to
rehosting OFP components to COTS hardware. Through a series of discussions, and execution of a cost
benefit analysis, the demonstration was redefined with the CCU as the target for emulation and wrapping.
The cost benefit analysis was also instrumental in securing additional funding required to carry the
demonstration through execution and verification. Subsequently, a program plan evolved under which:
- The CCU emulation would be carried through a laboratory demonstration of wrapped Radio Control
Function (RCF) of CCU operating on PowerPC under IULS funding (see following figure)
Analysis of RCF emulation problem to verify applicability of emulation technology to CCU upgrade
Demonstration to gauge utility of emulation technology and provide initial metrics
Demonstration to provide final gate before execution of TDs

‘Secondary 1553 letcuisy
= =
S‘r"“ Bus - HF (ARC-190) ‘:‘/
S Serial ACP/ Ruggedized| I
®
CPCI
f;‘ﬂ:::s”c Transponder Control Radar Bmx;;wms
fiainslull DI i k)
o G Audio P
Control
Inafoce [
S KvDisae], ped.
Interface | {0
?tﬂ:z(f‘izcm?unﬂ Sacom
ANDVT Discrete, Interface
i i B e —
Card Rack
Single Board Computer Discretes Analogs Serial
Busses
Wrapper CCU OFP .
Components | 1/O Emulation
2-1553
; Emulator
TRW Wrapper
Fram EWOI‘k/{ Wrapper I/O Services | | I/0 Services | | I/0 Services
Wrapper I 4
/
Components |
VMEbus

Figure 36. CCU Laboratory Demonstration Concept

Two Technology Demonstrations would be executed under separate funding
The first (TD-1) would demonstrate integration of emulation wrapped RCF on PowerPC in CCU
compatible VME chassis at the Avionics Software Integration Facility (ASIF) — Long Beach
The second (TD-2) would demonstrate full emulation wrapped CCU functionality.

5.3.3 C-17CIP

The CIP was also a good candidate because it (like the F-15's VCC) was a fairly typical mission
processor. It was unique to current military transports in that it was COTS hardware and contained an
OFP written in Ada83. It also represented a mission computer software domain that did not have detailed
display format driver components and worked in conjunction with “smart” cockpit displays. There are two
CIPs in a C-17, which are synchronized and can backup each other.

48

Aircraft/ Air Automatic Bearing Central Comm/ Data
Propulsion Data Flight Distance Aural Navigation Transfer
Data Computer Control Heading Waming Control Device
Management Panel Indicator System Panel
Computer
182
Central Fight Gilobal Head-Up Inertial Mission Muttifunction
Integrated Control Positioning Display Reference Computer/ Display
Processor Computer System Unit Comm
180 14 Keyboard
MC 1y 182
Mission Bus 182
Radar Spoiler Station VORILS Weather Tactical Automatic
Alimeter Control/ Keeping Marker Radar Air Direction
Electronic Equipment Beacon Interface Navigation Finding
Flap Receiver Unit
Computer
14
Aerial Airframe/ Annunciator Avionics Control Maintenance | _ Multiplex Bus
Delivery Engine Display Switching Stick Interface
System Unit Control Assembly Panel .
Panel Discretes

Figure 37. CIP Context

The CIP hardware was a new unit from Lockheed Martin containing 6U VME cards in a VME-64
backplane/chassis with many spare slots. The initial configuration as shown in the following figure included
a Computer Processor Module containing an R4400 and its OFP on SUROM, an Input/Output Processor
also containing an R4400 with two 1553 Channels, and an Input/Output Module for discrete 1/0.

Computer
Processor
Module
-+ R4400
- DRAM
- SUROM

VME64

Input/Output Input/Output
Processor Module

- Dual Channel - Input Discretes

1553 - Output
- R4400 Discretes
© DRAM
-+ SUROM
1553 Channel 1&2 Discrete 1/0

Figure 38. CIP Hardware Configuration

The CIP OFP was mostly Ada83 with some C driver components. It had been translated from the JOVIAL
MC OFP, using a tool provided by Hughes. It contained the VxWorks real-time operating system (RTOS)
from Wind River Software and was developed on Sun Workstations using a Rational host compiler and
Green Hills target compiler. The CIP OFP’s major features were similar to those of combat aircraft OFPs.

The major differences were that the CIP provided more navigation/guidance modes and flight/mission
planning services that are typical of transport aircraft, but did not support weapon delivery.

CIP Features

System Management and Monitoring
Communications Management
Navigation

Guidance

Controls and Displays

49

Aircraft Performance Prediction
Flight Planning

Database Management

Data Interfaces

1553 Busses

Discrete Interfaces

Potential C-17 Upgrades Which Affect CIP and APM Features
Traffic Alert and Collision Avoidance System (TCAS)
Autonomous Landing Guidance

Replacement of cockpit displays

MD-17 Commercialized Avionics

Global Air Traffic Management (GATM) avionics

Special Forces avionics

Although the decision was made not to pursue a CIP upgrade using IULS tools the CIP eventually played a
key role in the IULS Technology Demonstrations. As described below under TD-1 and TD-2, the decision
was made to redefine TD-2 to focus on integration of the TD-1 hardware and software into the CIP.
Results of these attempts are described under TD-2 below.

5.4 CCU Laboratory Demonstration
The initial effort in support of the C-17 CCU emulation demonstration was the CCU Laboratory
Demonstration which was executed under IULS funding to demonstrate the viability of the emulation
approach to the CCU upgrade. The CCU Laboratory Demonstration included two phases:
In the first phase an analysis of the emulation of the RCF of the CCU was executed
In the second phase, emulation technology was applied to develop wrapper software for the RCF
function of the CCU and performance was demonstrated in a laboratory environment.

As shown in the following figure, the program was structured such that successful completion of the
domain analysis (Phase 1) was an entrance criterion for the demonstration phase (Phase 2). The figure
also shows the various elements required for successful execution of the Phase 2 demonstration. Finally
successful completion of the Phase 2 demonstration was specified as an entrance criterion for Phases 3
and 4.

Domain
Analysis CCU

T OFP Build
COTS Board Set Image (V8.2)

Radio Cpntrol Emulated
Function

‘ Radios

<Phase 1 - Gate >

Emulation
Product

Wrapper S/W

COTS S/W (Develop. Item)

Exec, Drivers

< Phase 2 - Gate >

Figure 39. CCU Demo Gates

50

5.4.1 Phase 1

The Phase 1 analysis consisted of the following:
Domain Analysis
Evaluation of the Utility of the Emulator
Develop Demonstration Plan.

The domain analysis considered all CCU functionality, software and interfaces with major focus on the RCF
functions. Particular attention was paid to the 1553 RCF functions and discretes. The analysis determined
specific interfaces to be supported and functions to be emulated. The emulator evaluation was tightly
coupled with the domain analysis since emulator capabilities and modifications were integral to decisions
regarding scaling of the functionality to be emulated. The emulator evaluation identified required
modifications to the TRW RePLACE tool and API, major risk areas and provided ballpark estimates of cost
and schedule. TRW participated throughout the domain analysis in their role of emulator developer. The
results of the domain analysis / emulator evaluation was a set of requirements for each demonstration
phase which were executable within program resources. The consensus of the team was that the Phase 2
demonstration should focus on wrapping of the RCF with simulated 1553 interfaces and radios. The
demonstration should be executed at the C-17 SPO. Phase 3 would deliver a ruggedized PowerPC
system and emulation wrapping with real vice simulated 1553 interface devices (radios). Phase 4 would
deliver a wrapped CCU system with audio and radio control functions on a ruggedized PowerPC. The
Phase 3 and 4 demonstrations would be executed in the AIA at Long Beach. A top-level description of the
content of the three demonstrations is shown in the following figure. The figure includes changes in content
which are discussed under TD-1 and TD-2 below.

Elements

Phase 2

TD-1

TD-2

COTS Board Set

PowerPC, Dual 1553

PowerPC, Dual 1553,
Discrete 10 card

PowerPC, Dual 1553,
Discrete 10 card, CIP

COTS S/W

VxWorks RTOS,
Tornado IDE

VxWorks RTOS,
Tornado IDE

VxWorks RTOS,
Tornado IDE

OTS Emulator

RePLACE™ v1.1,
VIEWSstation™ v1.0

RePLACE™ v1.1,
VIEWSstation™ v1.0

RePLACE™ v1.2,
VIEWstation™ v2.0

Wrapper S/W

1553 1/O, Discretes
memory mapped

1553 I/0, Discrete 1/O

1553 1/O, Discrete
I/0, Integration into
CIP

OFP Build Image

Version 8.2

Version 8.2

Version 8.2

Radios Simulated UHF & Real UHF, VHF, HF, | UHF, VHF, HF, ARC-
VHF only ARC-210, IFF 210, IFF, APX-105

Audio None None (provided by 2™ | None (provided by 2"

CCU) CCU)

Discretes Simulated Real Real

Controls & MCK/MCD emulated | Real MCK/MCD, real | Real MCK/MCD, real

Displays on PC,no CNC, ICS | CNC, ICS CNC, ICS

Demo Event Radio Control thread | Redlined 80% Radio Redlined 85% Radio

Control SIT

Control SIT operating
in CIP

Figure 40. Demonstration Definition

The output of the domain analysis / emulator evaluation were used to develop the demonstration plan. The
team conclusion was that the problem was low risk within the schedule and budget available. The
demonstration plan defined the approach for demonstrating and testing emulated functions including test
signal collection needs and simulation approach. The plan defined the content of the demonstrations in the
following areas: interfaces, functions, displays, risk. It included a task schedule and critical path analysis.
The schedule and top-level content are shown in the following figure. As described below, the content and

51

dates for TD-1 and TD-2 changed in response to programmatic influences. These changes are reflected in
the figure.

} 1998 1999
3/12 8/31 12/31

Domain
Analysis _\ IULSTD Program
l Phase 2
Demo \

« Domain Analysis I -1
» Demo Plan - -
v _\ Transition to
Proposed
* MCK/MCD Control l
« UHF, VHF TD -2 =P Open System
(simulated) End State
« Aircrew Laptop . rchitecture
i Dual CCU Architect
Computer Database| . A|| Radios (real)
Download «CNC &ICS . .
« Fault Mgmt . Redlined Radio (R:?F?IO Control Integrated into
Control FQT * Redlined Radio Control FQT
C-17 SPO C-17SPO Long Beach Long Beach

Figure 41. Demonstration Schedule

The results of Phase 1 were reviewed with the IULS and G17 customers and it was agreed that the
program should enter Phase 2.

5.4.2 Phase 2

The Phase 2 demonstration was designed to verify applicability of the IULS emulator technologies and
processes to the G17 CCU domain. Exercise of limited CCU functionality and a subset of the external
interfaces was established as an entrance criterion for development of a more complete solution under the
Weapon System Software Technology Support (WSSTS) contract. The WSSTS effort would include
Phases 3 and 4 of the demonstration. Phases 3 and 4 are also known as C-17 Technology
Demonstrations 1 and 2 or TD-1 and TD-2.

The focus of Phase 2 was to demonstrate emulation of MIL-STD 1553 /O including emulated UHF and
VHF radio control. The ability to communicate over the RS-232 interface was also a demonstration goal.
The following figure provides a logical view of the C-17 Integrated Radio Management System (IRMS) with
the Phase 2 demonstration elements shaded. The MCK/MCD elements are the Mission Control Keyboard
and Mission Control Display, which were emulated in the demonstration and used to exercise the MIL-STD
1553 interface.

52

CCUNO. 2

Head
Phones o
Typical
(1 0f 9)

BC BC Discretel/
ISUY as an AudloAn:—nl q
pood T +———[_APX105]
COMM 2 BUS
< » ARC-210#1 |
Lene | >
) T MoN +———3 Radio (UHFL) |
| MCD | 1553 >
:|—| MCK |J¢——s . N =3
[_mcp_}
=INAViPLSR or..“
MCD
1 | TACAN |
MCK |¢————4] TACAN
MCD X |
MSN
Cene 18 1553 o PA]
=INAViPLSR or..“
1553
(s e OMM1BYS 3 Radios (HE)]
ISU 4?[Radios (VHF2) |
o ARC-210#2]
=I ADF Rcvr |
A A
ARC-21 BC BC . Discrete/
RCU » RT RT Audio Analog
CCUNO. 1

Figure 42. C-17 IRMS Elements Demonstrated in Phase 2 (Logical View)

In the Phase 2 demonstration configuration, a commercial VME Chassis containing a PowerPC 603e with
Ethernet, 200 MHz Dual 1553 and single-channel RS-232 interfaces acted as CCU No. 1. The CCU
Legacy OFP wrapped with TRW’s RePLACE 1750 Emulator executed on the VME-enclosed PowerPC. A
laptop computer was tied into the RS-232 interface to support Aircrew Laptop Computer (ALC) Database
Download. A separate PC, which acted as the MCD/MCK emulator, was tied into the MIL-STD 1553
interface. Another laptop was tied into the MIL-STD 1553 interface and connected to the VME Chassis by
Ethernet. This latter laptop executed TRW’s VIEWSstation Debug Toolset. UHF and VHF radio control was
emulated using the PASS-3000 1553 Bus Emulator.

Configuration is shown in the following figure.

53

The physical view of the Phase 2 Demonstration

Aircrew Laptop Computer
(ALC) Database Download ceUive, 2
Not Present

CCU Legacy OFP

COMM2
VxWorks RTOS
MCK/MCD Emulator .
MCD 24 '
MCK <] ISA
MCD .2 L ——

4_—

ncode

g £
w =
= £
z 2
5] w
= >
[

s 8
E 2
>)

23

<

o
pass3000 [<1 |

. 1553 Bus

TRW's

Emulator

VIEWstation™
Debug Toolset

TRW's RePLACE™

CoMM1L 1750 Emulator

"
BC BC Ethernet RS- VME Chassis
RT RT 232 PowerPC 603e, 200 MHz

Dual 1553 VME Interface
CCUNO. 1

Figure 43. Phase 2 Demonstration Configuration (Physical View)

The Phase 2 Demonstration executed a subset of CCU OFP functionality selected to satisfy the objective

of validating the emulation approach on an expedited schedule. The following figure shows CCU OFP
Components and indicates the extent to which they were exercised in the demonstration.

NVRAM
ANALOG

DISCRETES ONLINE

FAULT STATUS

CCUFAULT STATUS

Information Flow

Diagram (from CPDS)
OFFLINE
FAULT

STATUS

INITIATED BIT
SEQUENCE
TEST
SEQUENCE

APUs
1553

TEST SEQUENCE
OUTPUT
DATA INPUT

CNC $
CNC
QUEUES REQUEST PROC
'AUDIO $ ‘
PROC RADIO
OUTPUT
DATA
AUDIO

CONTROL
DATA

RS422

POWER
WARNING
STATUS

NVRAM

. CPC Bypassed
Q CPC Not Exercised

MCK
OUTPUT
DATA

ICS
REQUEST

. CPC Exercised

INPUT ARE
RADIO CONTROL
DATA

MCK
REQUEST

INPUT ARE
DISPLAY
PARAMETERS

Database ——»
Upload

Figure 44. CCU OFP Architecture Components

The primary concern regarding emulator performance was in the area of 1/0. The bulk of the modification

to the existing 1750A emulator performed to support the Phase 2 Demonstration were in this area. The
following figure provides an overview of the emulator I/O used in the demonstration.

54

« |/O Device Objects Written:
- BC1553 RT1553 BCRT Discretes

— Analog Transponder SATCOM Discretes Serial 10
— SBC Discretes
e Status of I/O Devices

— Completed Fully Functional 1553 Bus Controller Device Class (RT Class
implemented, to be tested in next phase w/dual CCU)

— Completed Fully Functional Serial IO Class
— Stubbed Out Most Discretes with Static Values

 OFP Code that has been bypassed with "thunks"

— Startup02 Replacement 0x01140 0x00002
— IBit01 Replacement 0x02F79 0x00157
— RegReadbk01 Replacement 0x022EA 0x00049
— XIOREDBLACK Replacement 0x0105F 0x0000A

Figure 45. Overview of Emulated 1/0

The demonstration procedure entailed 8 steps:
- Loading of Emulator and CCU OFP
Cold Startup of CCU OFP
Operation of MCK/MCD using MCK/MCD Emulator
Uploading of Comm Database from Aircrew Laptop Computer
Reviewing of Comm Database on MCD
Viewing UHF/VHF Radio Control 1553 Data
Reviewing Fault List on MCD
Viewing Emulator Performance

The Phase 2 demonstration was performed at the C-17 SPO on 12 March 1999. The following functions

were demonstrated:

- Mission Control Keyboard (MCK) / Mission Control Display (MCD) operation — verified the ability to
communicate on the MIL-STD-1553 bus
Communications Database uploading — verified the ability to communicate over the RS-232 interface
Display uploaded Communications Database - verified the ability to use uploaded database
information
Control an emulated radio — verified the ability to communicate with devices on the MIL-STD-1553 bus
Demonstrate status functionality.

There were several lessons learned from the demonstration:

- Lack of discrete interfaces & real hardware devices requires carefully tweaking stubbed out discretes
& careful modeling of some of them
Having LRU/OFP domain expertise on-site during integration will accelerate the effort
Adequate time should be allocated to assemble & checkout the various components of the test
environment
Care should be taken to ensure that the OFP and its documentation are consistent (same version).
This can be a quite common problem when very old legacy software is used, and the documentation
has not kept up with the pace of software changes
Getting the OFP up & running can be successfully accomplished in a very short time period after i/o
devices have been completed (2-3 weeks in this case).

The demonstration made to the G17 SPO was a major success. The program was described by Chris
Blake (then Technical Director) "This is great work...(to AFRL) your 6.3 funding will get even tighter, but
we can't let go of this one...(to Boeing) I'm offering to be your launch customer...(to Hartman - Chief
Systems Engineer) let's make this happen."

55

Following the execution of Phase 2, initiation of the Technology Demonstration Program (Phases 3 & 4)
was approved. The major areas of risk were all considered low after completion of the demonstration, as
shown in the following figure.

Risk Factor Severity Mitigation Plan
Fidelity Of Low - = Analysis Of OFP And Utilization Of
Emulation Moderate Thunks & Wait Loops— 4 thunksinstalled
Including Timing » Addressed During Phases 2 & 3
Dependent Code
Adequate Low — = Emulator Measured <=10% Of Available
Throughput For Mederate Throughput;
Emulator, I/ O = I/ O Wrapper Performance To Be
Wrapper, & New Measured In Phase 2 (< 15% Expected)
C Code = Emulator running at 6.5 MIPSw/ 1O
Function(S) wrappers (~ 85% excess margin)
= Audio-CodePerformance ToBe
Measured-& Used To-Project OS-CCU-
Perf—{<-25% Expected) not needed
» Addressed During Phases 2,3,4
Interfacing New C Low » CCU OFP IsWell Structured With Logical
Code To Existing Interface Boundaries Between Functions;
Jovial Object Code » Debug Toolset Assists User In Hooking
Into Legacy Code
» Addressed During Phase 2

Figure 46. Post Demonstration Risk Assessment

5.5 C-17 Technology Demonstration 1 (TD-1)
IULS TD-1 built upon the success of the Phase 2 demonstration. TD-1 was designed to accomplish all
objectives of the Phase 2 Demonstration, but in a more realistic environment and with additional
functionality. Significant changes from the Phase 2 Demonstration to TD-1 included:
Emulator and CCU OFP operation in a workstation environment
Emulator and CCU OFP operations in COTS Replacement Box (CRB) environment
CRB Connected to the IRMS Subsystem Evaluation Station in place of either CCU
Operation of MCK/MCD using MCK/MCD Emulator
Operation with both real and emulated MCK/MCDs
Operation of CRB with actual C-17 Line Replaceable Units (LRUSs) including second CCU, ICS
panels, CNC panels and radios
Uploading of Communications Database with current or follow-on ALC
Reviewing Communications Database on MCD
Preset selection and loading for all radios including SATCOM
ARC-210, UHF, VHF, HF, and IFF Radio Control
Discrete wires individually control power and antenna selection for each radio
Reviewing fault list on MCD
Fault History recorded and displayed identically to second CCU
Interactive and non-interactive Build-In-Test controlled by CRB for each interfacing LRU
Audio functions undisturbed in second CCU
CCU 2 controls audio routing for all radios
CIP/CCU/CRB 1553 handshake undisturbed

56

EMCON, TACAN, ADF function normally

The following figure gives a logical view of the CCU Demonstration Plans for TD-1 and TD-2. The Phase 2
Demonstration is included for reference. As can be seen from the figure each of the TDs add to the
demonstration content. It should also be noted that this logical view does not tell the complete story. For
instance, CCU No. 1 appears the same for the Phase 2 Demonstration and TD-1 on the logical view. In
actuality, the TD-1 implementation was of higher fidelity in this area as described below in the discussion of
the COTS Replacement Box.

CCU NO. 2 (Real CCU)
BC BC Discrete)
1SU RT. Audio x oo,
1558 T ———__APX:105 | |Phase 2, TD-1&2!
(COMM 2 BUS)
\ [ARC210#1] [To-iip2]
CNC
—————— MsN ["Radio (UHF1) |
1553 o
MK e
e —————[NAVELSRo)
MCD
[___TACAN |
TACAN
Head
Phones | | MSN
Typical +————— 1553 —-III
tore) - SN e
1553
(coum 1us) [Radios (AL
—»[css Je— 1
Functional Audio S -
1SU L Radios (VHF?) |
| _ARC-210#2 |
RC-21! BC BC Audi Discrete/
| RCU | RT RT AUdi® Analog
CCU NO. 1 - PowerPC CIP

Figure 47. CCU Demonstration Plan (Logical View)

The IULS TD Program was structured with TD-1 as a gate for TD-2. The following figure depicts this gate
structure along with the principal elements of TD-1.

57

— e e OFP Build
Image (V8.2)

Open S/W COTS Board Set

< Phase 2

Gate > OTS Radio Control

Emulation Function
Product Demo

Real Radios

Wrapper S/W
(Develop. Item)
COTS S/W

Exec, Drivers

i o PR AG Q- B G EEE D o

Add. CCU ECNs CCU Interfaces
(Audio)

Figure 48. CCU Demo Gates

A key element of TD-1 was the CCU COTS Replacement Box (CRB). The CCU CRB is a computing device
capable of functionally emulating either legacy CCU LRU. The rear panel of the chassis holds connectors,
which provide connection to the CCU 1/O signals. The CCU CRB also connects to a Personal Computer
(PC) known as the CRB User Console that executes download, test, and control software. The PC
connects to the CRB via both Ethernet and RS-232 connections. A critical component of the CCU CRB is
the processor board, which executes the RePLACE 1750A Dual Instruction Set Computer (DISC) software
and the CCU OFP. The processor board is a SP-103 Lockheed Martin Federal Systems (LMFS)
PowerPC 603e 200MHz single board computer housed in a VMEG64 chassis. The CCU CRB contains 1/0
interface boards to provide the I/O signals required for emulation of the legacy C-17 CCU. The I/O
interface boards send and receive the same signals as the legacy G17 CCU LRU so that the CCU CRB
can serve as a functional drop-in replacement for the C-17 CCU LRU. The CCU CRB communicates with
an external PC used as a User Console. The User Console acts as a file server, providing software and
data files needed by the CCU CRB. The User Console also downloads and starts the CCU CRB software.
The CRB replaces the commercial VME Chassis, PowerPC and interfaces used in the Phase 2
Demonstration.

The following figure shows the TD-1 Demonstration Configuration. Comparison with the Phase 2
configuration, shown previously, highlights many of the changes. The figure shows: the availability of dual
MCK/MCD's vice the emulated MCK/MCD used in the Phase 2 demonstration, utilization of the MCK/MCD
to host the VIEWstation toolset and perform the ALC Database Download, single or dual CCU
configuration, and the inclusion of real radios. Not visible from the figure is the contribution of the CRB.
The CRB includes the VME Chassis etc and supports testing of the radio discrete interfaces.

58

Aircrew Laptop Computer
Database Download CCUNO. 2
VIEWSstation™ . sc sc No Disc. Legacy CCU
Debug Toolset RT RT Audio 10 CQU Legacy OFP
»[CARC210#1]
IEE
1st MCK/MCD VxWorks RTOS y
=
_ [
- : g
MCD odg S
/O |
Emul| 3
2nd MCK/MCD sw] &
COMM1
MCD 1750 Emulator
,L_Radios (HF) |
- [Ralos (Ve]
CNC
[Ccss J«
VME Chassis
BC BC No Disc. PowerPC SP-103, 200 MHz
RT RT Audio o Dual 1553 Interface
Discrete I/O VME I/F
CCUNO. 1

Figure 49. TD-1 Demonstration Configuration

TD-1 was completed in August 1999. The following items were demonstrated:
- Operation of CRB acting as a single CCU

Dual CRB — CCU operation

Communications Database upload with current and follow-on ALC

Operations with MCK/MCD, CNC, ICS

Operations with all radios (ARC-210, UHF, VHF, HF) and IFF

Audio control and switching with CRB and second CCU controlling audio as “Alternate”

Initial bench-marking performance indicated 6.0 MIPS compared to 6.5 MIPS at March demonstration,
largely due to additional processing. This represents approximately a 90% reserve above the legacy
1750A processor.

There were no major anomalies during the testing. Four minor anomalies were observed and were
subsequently dispositioned. The decision was made to proceed with TD-2.

5.6 C-17 Technology Demonstration 2 (TD-2)

By the time of initiation of TD-2 the demonstration had undergone considerable redefinition. The original
plan (12/98) had been to add TCOMMS Audio Switching in TD-2. Before initiation of TD-1, this plan had
been revised. Audio switching was eliminated because of Telephonics costs and interface to the APX-105
Transponder was added. The original approach emphasized use of Telephonics TCOMMS software to
perform the audio switching function, and the use of emulation for the remaining radio control functions.
Audio switching functionality costs based on integrating off-the-shelf TCOMMS software were substantially
above available funding and made this original element of TD-2 impossible to execute. As an alternative,
Boeing Long Beach recommended (and we received C-17 SPO concurrence) to replace audio functionality
with execution of CCU functionality by integrating CCU COTS processor into the CIP. The rationale for
these changes were the non-recurring costs for the audio switching and the C-17 Program interest in CIP
integration as a potential end-state.

The TD-2 kick-off was held following the TD-1 demonstration on 26 August and served to re-prioritize
some of TD-2 activities following the success of TD-1. The priorities were developed jointly by the C-17
SPO and the C-17 program at Long Beach and were selected to better enable C-17 to incorporate results
of the Tech Demo program in their C-17 Open Systems Communication architecture study. Specifically, the
following priorities were made: 1) Transition CCU OFP baseline from 8.2 to 8.3; 2) Incorporate emulation

59

wrapped OFP into CIP; 3) Incorporate C language fixes to 8.3 software into the emulation wrapped OFP;
4) Investigate ANDVT. The incorporation of APX-105 radar transponder was viewed by C-17 as of only
limited utility, since during TD-1 we have already demonstrated interface of wrapped software with a wide
variety of other 1553 devices.

Initial integration for TD-2 was conducted at Long Beach on 27 - 30 September 1999. The activity
included: 1) Incorporation of CCU OFP baseline 8.3 into the CRB; and, 2) Initial CIP integration of SP-103
and discretes into the CIP. The upgrade of CCU baseline from 8.2 to 8.3 proceeded very smoothly.

Initial integration of the CRB components into the CIP did not go as smoothly as desired. The SP-103 was
successfully integrated into the CIP using a VME extender card. However, the CIP was not able to work
with both the SP-103 and the discrete 1/O boards installed on VME extenders in the CIP chassis.
Specifically, the CIP would either go into a degraded mode or not work at all with more than one extender
card in the chassis. This appeared to be due to system losses as the bus was extended. Lockheed
Martin CIP personnel at Long Beach reported that was also their experience. Also, the VMETRO VME
bus analyzer tool did not fit within the channel guide. The discrete boards and VME repeater boards had
card layouts that allowed component contact with the chassis. To accommodate operation in the CIP, the
discrete card layout would need to be modified to utilize less board space. This may or may not be a
problem with ruggedized COTS discrete 1/0O boards.

Boeing and TRW developed two plans in response to work around the CIP chassis limitations: 1) Plan A;
and 2) Plan B. The plans were documented in the minutes of a TIM held on 7 October in Dayton. Through
subsequent evaluations, Plan A was identified as the preferred approach.

The following figure shows the approach for plan A. Briefly, the SP-103 board would be installed in the
CIP chassis. A VME Repeater Master card would be installed in the CP and connected with a "Slave"”
card in the CRB. The discrete /O boards would be installed in the CRB. In essence, this is the same
arrangement as a CIP integration (assuming that ruggedized discretes would fit within the chassis).

IMPLEMENTATION PLAN “A”
VME Repeater Master - Slave

O>Z00xT>
O>»Z00 3>
O>rPZ0073T>

~

VME Repeater “Master” installed
in CIP. “Slave” in CRB.

LM SP-103
Moved from CRB to CIP
Operating on Extender

| All VME bus arbitration occurs in CIP Chassis

Figure 50. CRB CIP Integration Plan

Boeing performed a second integration of the wrapped Radio Control Function (RCF) in the CIP starting 1
November. The November integration activity used Plan A from the October TIM. The second integration
activities proceeded with limited success largely due to the somewhat non-standard VME nature of the
CIP. TRW and Boeing discussed the integration issues with the CIP vender. The vendor indicated: 1)
Need for current SP-103 drivers; and 2) Need to cut traces in the CIP backplane. Given these, they
indicated that they believed the integration would work.

60

Most important, Boeing IULS personnel met with Boeing G17 personnel relative to the communication
open architecture study and to CIP integration progress. They described their efforts in CIP integration
and relayed to the G-17 personnel the results of the telecon with the CIP vender. Boeing C-17 indicated
that he could possibly get a spare CIP chassis to use to implement the vender suggestion. They also
indicated that Boeing C-17 no longer consider integration into the CIP as either a mid or short-term
objective. Instead they viewed it as a very long term (C-17B) type of goal. Based on this significant C-17
change of philosophy, the IULS TD program decided that it no longer made sense to pursue integration
activities with the CIP - since the transition story had for practical purposes evaporated. Instead, tech
demo efforts focused on evaluation of the emulation tool by G-17 personnel - especially in its support of
incorporating new C++ software. Specifically, we believed that for a tech transition story to have real
longevity, it would be necessary to not simply emulate a legacy system - but also to demonstrate how the
system could support new functionality developed using modern languages including C and C++.

Following initial RePLACE training by TRW, Boeing S/W engineering personnel initiated their development
of the C-language software update to CCU OFP version 8.3. They continued their efforts, and were able
to incorporate their update into the wrapped RCF. The software engineers wrote a draft report discussing
their observations on use of the emulation toolset. The report indicated that the engineers were able to
accomplish their job without difficulty. The report also provided both positive observations on the toolset,
but also indicated some desired updates. It also indicated that successful use of the tool required domain
expertise. Some potential hardware problems with the CRB were reported by the engineers who were
working the C-language update. These problems have been resolved, and were indicated to be AISF
related, and were not CRB problems.

The final disposition of TD-2 is:
Ease of incorporating update of legacy Jovial OFP from 8.2 to 8.3 was demonstrated
Less than one day of activity
Successfully executed subset of System Integration Test (SIT)
Successful execution of C-language update of Jovial Code
Boeing C-17 developed challenge problem
Training on emulator provided by Boeing IULS team to Boeing C-17 software developers
Code developed and initial testing by Boeing C-17 in ASIF
Successful employment of technology demonstrated
Oct 99 integration
COTS Discrete cards did not fit in CIP chassis (impinged on wedge locks)
PowerPC and Discretes on Extender Board in CIP
CIP operated in degraded mode
Probable cause losses as bus extended
Coincides with CIP vender experience
Nov 99 integration
PowerPC on extender board in CIP
Discretes in CRB
Bus conflicts
Boeing/CIP vender discussions indicated cutting of traces for backplane and installation of latest
PowerPC driver probably required but could be made to work
CIP date preceded VME-64 bus standardization
C-17 Program and IULS Team Meeting indicated CIP incorporation of RCF no longer in near / mid-term
plan
CIP integration efforts suspended

5.7 C-17 Communications Open System Architecture (COSA)

The C-17 program embarked on the COSA program during the summer of 2000. Figure 51 shows a
COSA program history.

61

1998 1999

A A TT—T T

C-17 Avionics
Phase | OSA Study
PTP-077 Revised PTP-077 Aug - Dec 98
GATM Initiatives GATM Initiatives
8 Jan 98 24 Apr 98
P PTP-077 COSA Study
*GATM *GATM SRR/JCB May - Dec 99
- CPDLC, ADS-A,TCAS, - CPDLC, ADS-A,TCAS, Mav - Jun 98
CMU, AERO-I, APX-100 CMU, AERO-I, APX-100 y *OSA CCU
Mode S Mode S - Digital Audio
«|RMS «|RMS *AMC / SPO concerned - Radio Control in CCU
- Legacy CCU analog - Legacy CCU unchanged by non-integrated GATM *OSA CNC
audio update -ICS, CNC unchanged solution *OSA HRP
- Modified ICS - P/CP HRPs modified, *Recommended launch of «COSSIICS
- No CNC changes SAT audio panel added separate OSA project for *Sat audio panel deleted
- No HRP changes - CCU controls Mode S IRMS *No 1553 bus architecture
- CIP controls AERO- *Nov 97 architecture as change

-~$85M development total baseline

*~$61M development total

Figure 51. COSA Program History

The COSA study concluded in December 1999 and resulted in the initiation of an ECP for implementation
of an open architecture upgrade of the G-17 communications system. Telephonics, the producer of the
current legacy CCU, was selected as the lead subcontractor. Key elements of the COSA program are
identified in the figures below.

O System upgrade of the existing Integrated Radio Management

O OSA CCU/Audio Control Unit replaces legacy CCU
elncorporates digital audio
eProvides secure communication operations at all stations
e System control functions remain in the CCU
—1553 bus control
—Radio selection, operation, and control
—MCD user interface
eMitigates DMS/obsolescence
eExpansion capability to support future requirements
—GATM Enhancements
—VHF Data Link
—~Real Time Information in the Cockpit

Figure 52. Key COSA Program Features

Additional key COSA elements are: 1) 1553 Bus Architecture remains unchanged with no impact to mission
bus loading and address usage; 2) Upgraded CNC and ICS control panels to “soft panel” configuration;
and 3) CIP functions remain unchanged. These latter changes were consistent with the IULS TD decision
to abandon integration of CCU functionality into CIP. The final issue in the COSA program was the role of

62

IULS technology. Following several option evaluation TIMs, the Air Force decided with Boeing C-17
Program concurrence to transition IULS emulation technology into the COSA EMD program. Specifically,
emulation would be used as an integral element of the development for the radio control function. A key
contributor to this decision was the potential cost savings realizable based upon a REVIC line of code
analysis of alternatives. However, the use of emulation is still considered by the G17 Program as a
program risk that needs to be mitigated through additional prototyping and testing. The figures below
display the COSA development approach that is being executed during the EMD program.

TRW TRW /Boeing Telephonics Telephonics
Sell-Off

Boeing Boeing

RePLACE
Bloc!
Legacy
ccu
OEP

Block 12
Legacy
CCu
OFP

Telephonics Telephonics Telephonics

-

Figure 53. Key COSA / IULS Development Processes

Boeing
Phase |
Flight Test

63

Boeing &
Telephonics Telephonics,
Boeing Boeing Boeing, TRW
Block 14 Software B;_IOCk " RPOIC_AE ;
HFDL Change ec%aﬁy —p| | Legacy Telephonics
Requirements| Analysis Code Modify ccu
QED .
COSA CCU S/W Integratio
Boeing & SIW RePLACE| |
Telephonics Unit Thunk
Boeing Telephonics Test Develop
Block 14 SIW
Phase | oc Program
N Software New :
Flight Integration|
T Change Development
est) Test
Analysis COSA
Results
Code
Boeing
Phase Il
Flight Test) i
9 Telephonics Telephonics Telephonics
Qgg'gi:d Hardware
Boeing el Software |4—
OFP Integration
AISF
Upgrade
(Block 16)

Figure 54. Key COSA / IULS Development Processes (Cont.)
These figures demonstrate the key role that IULS emulation engine will have in the COSA program.

5.8 C-17 Summary

The C-17 IULS transition is a work in progress. Our experience indicates that transition can be difficult but
is achievable. Successful transition requires perseverance, patience, as well as an opportunity to perform.
In IULS, we started down the tech transition path with the C-17 program as our partner. As a team, we
changed demonstration challenge problems to select one that was most relevant to the C-17 and had the
greatest potential to transition to EMD. We launched the IULS tech demonstration program using a
carefully structured four phase approach. The first two phases were executed under the IULS program.
Entry into phase 3 was conditional upon receiving approval of the C-17 program. The phase 2
demonstration was an unqualified success. It received high praise from the customer, and the decision
was made to proceed to Phase 3 to demonstrate the utility of IULS emulation in the G-17 avionics labs.
The demonstration provided a first cut shake out of emulation technology and indicated significant promise.

At the end of phase 2, the G-17 Technical Director was re-assigned to work on the 22 program. In a
sense, IULS program lost one of its greatest technology transition backers when the TD left. The lesson is
that tech transition to some degree is also driven by advocacy at the top of the production program, and is
not simply driven by technology success or maturity.

Phases three and four of the tech demonstration program were executed on cost and on schedule with
very positive results obtained by execution of existing C-17 test procedures using the CRB. Even with this
success, the transition remained in the balance. Production programs are by their very nature risk averse.
New technologies such as those offered by IULS are seen as potential risks - even when their
performance has been proven.

Before IULS technology was selected for COSA, a number of options were considered and an exhaustive
trade study was performed. IULS program was a key participant in these studies, and we were able to
successfully make the case that emulation technology was ready for prime time and should have an
important role in the COSA EMD program. One of the central arguments that was made was that use of

64

emulation is a risk mitigator. Re-engineering of the proven legacy code would be costly. We estimated
using REVIC that utilization of IULS emulation technology could potentially save the COSA program on the
order of $3M. This estimate was based on comparing costs for re-engineering into C/C++ approximately
30,000 lines of code vice emulating the function using the RePLACE emulation engine. This argument was
persuasive and was important not simply from a cost perspective - but more from a risk perspective. The
customer may save money by using emulation - but counts it more as a reserve against program risk.

One of the important factors to consider is that in this IULS technology transition, Boeing had key roles as
both the technology customer (C-17 program - Long Beach) , and the technology evaluator (IULS prime).
This provided us visibility into the technology transition selection process that would have been impossible
otherwise. This same opportunity would have likely been not available to an outside technology developer
attempting to transition technology to the production program.

Some other thoughts are germane to transition of emulation technology to a production program. We must
first remember that IULS is all about incremental upgrade. It is about steps along a migration path to an
open system and taking advantage of existing legacy software. In the C-17 COSA program, the customer
needed to balance their desire to make a radical open system architecture upgrade with realities of
program risk. As originally bid by Telephonics, COSA envisioned a complete re-engineering of CCU
software. Telephonics did not intend to utilize any legacy software in their update. The C-17 program was
convinced that an incremental approach afforded them a better short term solution, provided a less risky
transition path to the desired open system end state, and allowed them to utilize a substantial investment in
legacy software.

The COSA program is taking a novel approach to the use of the legacy software that needs to be
considered as the IULS emulation model evolves. Specifically, rather than starting with a legacy executive
and calling new native functionality, COSA is building a new native executive to call selected elements of
the emulated legacy software. While this might be considered a riskier approach, it represents the C-17
program perspective of marching toward the future, and the emulation engine needs to adapt and support
this type of approach. The lesson is that in the technology transition, the customer is the architect of the
design and will be using tools in ways that may not have been originally intended. Failure of the technology
to perform as designed even in the face of new applications can forestall the technology transition. Also,
in some instances the failure may be due to poor or not maintained legacy software design in the first
place.

65

6 Perimeter Attack Radar Characterization System Analysis

The Perimeter Attack Radar Characterization System (PARCS) is a one-of-a-kind sensor system,
developed in the early 1970s for the United States Army Safeguard Ballistic Missile Defense System by
the Western Electric Company, a part of Bell System at the time. The original system design called for
twelve sites, and the system’s logistic support was planned with that in mind. With the signing of the anti-
ballistic missile treaty between the United States and the Soviet Union, full development of the Safeguard
system halted. The PARCS site, at Cavalier, N.D. was the only site that remained open and all available
spares were sent there. These spares have been sufficient to maintain the site through the present time.
However, continued operation is problematic due to imminent exhaustion of the supply of spares.

Incremental upgrade of the PARCS system software, to a Commercial Off The Shelf hardware
architecture, using the IULS methodology and toolset, was identified as a potential avenue of relief for the
PARCS hardware obsolescence challenge. The hope was that a demonstration of the application of IULS
technologies to PARCS could be fit into the Insertion of Embedded Infosphere Support Technologies
(IEIST) program, a new start program funded by the Air Force Research Laboratory. This plan was
contingent upon positive answers to three issues: 1) that incremental upgrade of PARCS software to a
COTS hardware suite using IULS was feasible within reasonable budget limitations, 2) that the upgrade
would be cost effective, i.e. that given the incremental upgrade of the PARCS software, the PARCS
system would be a viable and valuable element of the U.S. space infrastructure, and 3) that informationally
PARCS could be fit into the IEIST Concept of Operations and scenario(s). In order to further assess the
feasibility of this approach, a limited domain analysis of PARCS was executed under IULS funding. This
three phase domain analysis was targeted at determining the feasibility of including PARCS in IEIST by
answering the three aforementioned questions. This report presents the results of that analysis.

In the first phase of the analysis, the IULS tool-set was assessed for applicability to the PARCS hardware
obsolescence problem. Following a streamlined model of the IULS wrapper development process, a top-
level assessment of the PARCS hardware obsolescence problem identified emulation as a promising
wrapper approach. Unique problems, posed by PARCS from an emulation perspective were assessed.
Section 6.1 and subsections present this portion of the domain analysis.

In parallel with the assessment of PARCS emulation problems, a second phase of the analysis dealt with
the cost effectiveness of an incremental upgrade of PARCS. Verifying the cost effectiveness of an
incremental upgrade approach is a critical element of the IULS wrapper development process. The intent
of this second phase was to ensure that any expenditure of resources on PARCS would result in an asset,
which is an integral element of our national defense system well into the 21° century. In support of this
analysis reference materials were analyzed to determine the overall status and complexity of PARCS. This
portion of the analysis was intended to ensure that all problems facing PARCS including the
aforementioned hardware obsolescence issue, were addressed. In addition, USAF plans regarding future
upgrades of the Early Warning System (EWS), were assessed to determine the value of upgrading
PARCS. Both NMD resources and Radar Architecture Migration Program resources were used for this
purpose. The intent here was to ensure that the PARCS asset remains a critical element of our national
defense plans. The results of this portion of the analysis are presented in Section 6.2 and subsections. As
described, this phase disclosed that PARCS faces many problems beyond hardware obsolescence.
These additional problems altered the recommended course of action. Briefly the analysis of Section 6.2
brings into question the efficacy of expending additional resources on PARCS. More importantly, the
detailed cost effectiveness analysis indicates that the only viable approach to PARCS upgrade is to
leverage the on-going activities required to upgrade the Early Warning Radar (EWR) infrastructure to
satisfy National Missile Defense requirements. If PARCS is to be maintained as part of our 21° century
defense structure, it must leverage the investment being made in the EWR infrastructure.

The final phase of the analysis was performed under IEIST funding and is summarized herein. In this
phase IEIST scenarios were developed. Every effort was made to include PARCS derived information in
these scenarios. Results are presented in Section 6.3. In summary, the results are that PARCS offers no
benefit to any of the IEIST scenarios and will not be included in the IEIST program.

66

6.1 IULS Tool-set Applicability to PARCS Hardware Obsolescence

Unique aspects of the PARCS system from an emulation point of view were assessed. These included:
Symmetrical Multi-Processing (SMP) impacts including cache coherency with shared memory and 1/O
problems specific to the radar sensor; Instruction Set issues; Basic Operating System (BOS) issue; and
Tactical Operating System (TOS) issues.

6.1.1 SMP Issues

The PARCS Central Logic and Control (CLC) segment, in conjunction with TOS, is a Symmetrical Multi-
Processing (SMP) system. This would require the replacement of each Processor Unit (PU) with an
equivalent COTS processor (recommend the PowerPC) in order to retain the SMP characteristics of the
system. While a single COTS processor might exceed the entire CLC in raw (emulated) performance, it
probably can not service a large number of concurrent real-time events and still meet latency requirements.
Separate COTS processors will also help preserve any fault-tolerant features of the CLC system.

Each PU has a Harvard architecture with separate memory spaces for instructions (Program Store (PS))
and operands (Variable Store (VS)), and all the PUs share the respective spaces with each other. The
instruction space can not be written under program control and therefore the instruction space can be
emulated locally on each of the COTS processors, thereby improving performance.

The PU supports a Duplicate Mode that allows the PU to try and fetch the same instruction simultaneously
from two Program Store (PS) groups. With the instructions stored locally on the COTS processor, this
feature is not needed and the supporting Duplicate Mode instructions can be NOPped.

The Variable Store (VS) is read and written by all the PUs and will require that a cache coherency protocol
be enforced for these accesses. The latest generation PowerPC G4 processor supports a MERSI
(Modified, Exclusive, Reserved, Shared, Invalid) coherency protocol. MERSI assists in the single writer,
multiple reader cache coherency problems. However, for multiple writers, software protocols need to be
enforced. These are addressed by the Iwarx and stwcx instructions.

The Iwarx instruction sets the RESERVED bit, loads the location specified by the effective address (EA),
creates a reservation on the local processor and communicates the reservation to the other processors. If
another processor updates the specified EA before the local processor executes a stwcx, the
RESERVATION bit will be cleared.

The stwcx instruction attempts to write the specified EA. If the RESERVATION bit is set, the instruction
performs the write, clears the RESERVATION bit, and sets CRO[EQ]. If the RESERVATION bit is
cleared, the write is not performed and CRO[EQ)] is cleared. So while the hardware does not guarantee
atomicity, it actively reports when it fails.

The hardware only supports one reservation request. Multiple Iwarx instructions without matching stwcx
instructions simply remove the reservation at the previous EA with the reservation at the new EA. Also, in
a multi-tasking environment, the Iwarx / stwcx. pair need to be protected with a critical section that locks
out external interrupts.

The SAFEGUARD machine has a similar mechanism with the Fetch and Bias Negative (FBN), Double
Fetch and Bias Negative (DFBN), and Double Conditional Store (DCSB). Instead of a global
RESERVATION bhit, the reservation bits are part of the data at the EA.

The FBN and DFBN instructions perform similarly to lwarx except the two most significant bits of the evenly
addressed EA are set to ones. These instructions do not update the parity associated with the EA. If
some other instruction updates the EA prior to the FBN / DFBN instructions and the first two bits are not 00
or 11, then an even parity condition is created when the FBN / DFBN is executed (causing a parity
interrupt).

The DCSB instruction performs similarly to the stwex instruction except that it checks the two bits of the
evenly addressed EA. |If the bits are both 0, then the store occurs otherwise the store fails and an
interrupt is generated.

67

6.1.2 Instruction Set Issues

The PU floating point format is a 32 bit, signed magnitude, biased exponent, much like the IEEE-754
formats. The |IEEE-754 64 bit double precision format will easily contain the PU format, allowing floating
point operations to be performed by the COTS hardware, with the emulation software performing
translation between the formats and detecting PU floating point underflow and overflow conditions.

The PU provides Store Lockout functions for the VS that prevent the PU from writing to designated areas
of the VS and for generating an interrupt if such an access is attempted. This feature can be emulated by
using the hardware paging mechanisms of the COTS processor.

6.1.3 Basic Operating System (BOS) Issues

The primary purpose of BOS is to provide a debugging environment for tactical software integration. BOS
is not an operating system per se, but a set of utilities that allow the loading, debugging, and integration of
the tactical software with TOS. In the controlled environment of the TRW emulator and associated
VIEWSstation support tools, the need for BOS would be greatly diminished.

The parts of BOS that would be supplanted by the emulator / VIEWstation would be the modules Main
Control, Loader, /0 Manager, Man Machine, Debug, and Utility Programs.

Darts, Error Control, and Overlay Manager would be retained to support TOS. These modules interface
with both TOS and CLC Control and bridge between them.

6.1.4 Tactical Operating System (TOS) Issues

The Tactical Operating System provides the real-time multi-processor environment for the tactical
software. TOS, however is not a pre-emptive multi-tasking OS. Threads are entered and run to
completion, at which time the processor looks for a new thread to run. The multi-tasking in the system
comes from having multiple processors, the more processors, the more threads that execute concurrently.
The Fetch and Bias Negative and Double Conditional Store instructions provide the basis of the mutual
exclusion that allows the processors to safely locate and run threads without interfering with one another.

The current IULS emulator makes use of Wind River's VxWorks both as the real time environment and the
development environment. VxWorks also provides SMP capabilities with the VXMP package. Parts of TOS
(and BOS) can make use of VxWorks features, especially the SMP semaphores, for emulating the Fetch
and Bias Negative and Double Conditional Store instructions.

The scheduling features of TOS have no direct counterparts in any COTS OS, and so while it desirable
that some parts of TOS be converted to make use of the scheduling features of a COTS OS, it is unlikely
that TOS can be replaced one-to-one with COTS OS.

6.1.5 Conclusions Regarding IULS Emulation of PARCS

Application of the IULS emulation tool to the PARCS domain is a feasible approach to addressing
hardware obsolescence. The end product of an emulation effort would be the current PARCS CLC object
code operating in a new COTS based (PowerPC) hardware architecture. Any deficiencies regarding the
robustness, maintainability and upgradeability of the PARCS software (see section 3.2) would not be
redressed by this approach. Tasks involved in emulating the PARCS CLC would include: Adaptation of the
IULS 1750A emulator to the SNX360 Instruction Set Architecture (ISA); Validation of the adapted emulator,
Development and validation of a set of hardware device driver emulations; Replacement or conversion of
the BOS and TOS; Complete validation of emulated PARCS functionality. Although detailed cost estimates
were not in the scope of this study, it is obvious that any meaningful effort in this area is well beyond the
resources available under IEIST funding.

6.2 PARCS System Assessment

An integral element of the IULS Wrapper Development Process is execution of a cost effectiveness
analysis of the proposed incremental upgrade. In support of this, a system assessment of PARCS was
performed. In this phase of the analysis, PARCS documentation was reviewed with an eye toward
robustness, maintainability and expandability of the system software. The viability of PARCS as a node in
the National Missile Defense (NMD) infrastructure and an element in the Radar Architecture Migration

68

Program (RAMP) was assessed. Approaches to upgrading PARCS using the IULS tool-set, to
incrementally integrate PARCS into RAMP, were also explored. The results of this portion of the analysis
are presented in the following subsections.

Section 6.2.1 deals with the robustness of the PARCS system. Upon review, it was discovered that
numerous issues, over and above hardware obsolescence, face PARCS. The software is unmaintainable
and needs to be re-written and/or the system needs to be re-architected. These discoveries obviate the
initial indication that emulation is the preferred methodology. The preferred approach to PARCS, assuming
sufficient need exist to justify the requisite funding, is to integrate PARCS into the Radar Architecture
Migration Program (RAMP).

Section 6.2.2 presents a top-level description of the BMEWS/PAVE PAWS and COBRA DANE systems.
The materials in this section are taken from the RAMP study and include discussion of using
BMEWS/PAVE PAWS and/or COBRA DANE as baselines in development of the Upgraded Early Warning
Radar System (UEWR). Section 6.2.3 discusses the RAMP process and provides insight into the
recommended UEWR architecture. It also discusses efforts required to include PARCS in RAMP including
possible use of IULS tools in the process. Section 6.2.4 captures the results of discussions with Boeing
NMD personnel regarding potential contributions by an upgraded PARCS to the NMD architecture.

6.2.1 PARCS System Robustness

Reference materials were reviewed to understand the details of the PARCS system and to gain an
understanding of the robustness of the PARCS software system. In particular, the 1995 study of PARCS
software maintainability was of great use. It is a very thorough study performed by PRC. It reported that:

The original maintenance environment was abandoned. There exists no capability to re-compile
the system;

As of 1995 3554 patches have been applied to system representing 95,899 LOC, 777 out of 1150
modules patched , 20 or more changes to 33 different modules, 92 changes to one;

Configuration management has been lost. A completely known baseline does not exist. Source
code files do not exist, only listings which may not match executing code in all instances;

Issue over size of the current satellite database. Variable Store memory unit 14 can only hold
8329 objects -- insufficient for current mission.

The up-to-date documentation for a given LC module is represented by a collection of original
specifications or manuals for the module, plus each and every Version Release Package affecting the
module since its last re-compile;

There is no single updated version of each document ... and no assurance at this time that the
collection of document changes accurately and completely represent the operational code;

There is a wide variety in the quality of patch documentation;

Currently four personnel (as of 1995) are familiar with the system - well below minimum. Only one
system engineer remains and is expected to retire.

Interestingly, at the time of this report, hardware obsolescence was not considered a problem.

The report included numerous short, intermediate and long-term recommendations for correction of the
observed deficiencies. Discussions with personnel at PARCS and at Peterson AFB indicate that none of
the recommendations have been executed. Therefore the current situation is that all problems specified in
the 1995 report still exist, and hardware obsolescence is now a problem. This means that to incrementally
produce a maintainable system, all of the short and intermediate terms recommendations must be
executed along with the development and integration of a new COTS based system architecture,
adaptation of the IULS emulator to the current PARCS ISA, execution of the incremental upgrade and
complete re-validation of the system.

This represents a massive undertaking and would result in a one-of-a-kind system, written in CENTRAN
and executing functionality, which was developed in the early seventies. Clearly, if PARCS is to be
upgraded, it must be in accordance with the long-term recommendation. To this end an assessment of
inclusion of PARCS in RAMP was executed as part of the domain analysis. The following subsections
capture the results of this analysis.

69

6.2.2 BMEWS/PAVE PAWS and COBRA DANE Analyses

One approach to upgrading of PARCS is to build upon the commonality between various Early Warning
Radar (EWR) sites to develop a new system baseline for PARCS. The BMEWS/PAVE PAWS and
COBRA DANE systems were analyzed for applicability to the PARCS problems. The analysis indicated
that COBRA DANE offered great synergy with PARCS and that a PARCS re-architecture should rely
considerably upon COBRA DANE technology.

COBRA DANE'’s primary mission is to collect intelligence data on Soviet ballistic missile test during the
exoatmospheric portion of their trajectories. This mission, called Intelligence, consists of collection of
precise, multi-object radar measurements on Soviet missile weapons system development and operational
flights to the Kamchatka Peninsula and Northern Pacific Ocean, retrograde launches from the Pacific
Missile Fleet complex, and other ballistic missile trajectories within the radar’'s coverage volume. The data
collected is used to generate quick-look messages and determine the missile complex trajectory and type,
the type of each object in the complex (e.g., tank, re-entry vehicle, fragment, etc.), the relative position of
objects in the complex, motion such as spin rate, and the constructed image of selected objects.

A corollary mission is to perform ballistic missile early warning. A surveillance fence to detect ballistic
missiles in flight over the COBRA DANE azimuth coverage is continuously erected. This fence coverage
overlaps that of another radar system in Clear, Alaska and can be used either as a backup sensor or to
provide enhanced warning information. When an earth impacting missile is detected, the system
automatically issues launch and predicted impact messages to the Space Defense Operations Center
while continuing surveillance for additional missiles. The system reports object number, launch point,
impact point, time for all earth-impacting objects, and other early warning information.

Space Surveillance or Spacetrack, is the system’s secondary mission. COBRA DANE augments the USAF
Space Surveillance system by providing satellite metric and signature data. To perform the mission,
COBRA DANE maintains a catalog of all known Earth Satellite Vehicles (ESVs) which is updated via
communication lines to Space Command. The system automatically accepts tasks for metric and Space
Object Identification (SOI) signature from Space Command and makes automatic adjustments to the
Orbital Element Set (OES) n the catalog based on the metric data. COBRA DANE erects space
surveillance fences, which detect ESVs in a designated volume of space. Any ESV detected, which does
not correlate with the catalog, is automatically tracked. The data include detection of New Foreign
Launches (NFLs) within the coverage area.

While the COBRA DANE is not considered a primary early warning radar (EWR) sensor, it provides the
basic capabilities of an EWR. COBRA DANE was recently upgraded and modernized via the COBRA
DANE Modernization System (CDSM) program. Since the current COBRA DANE provides the basic EWR
capabilities and is a relatively modern system, it is a prime candidate for use in the UEWR architecture.

The analysis conducted indicated that the primary feature of the CDSM system architecture that is most
applicable to the Upgraded Early Warning Radar (UEWR) architecture is the overall distributed processing
architecture. The particular partitioning of processing functions across multiple nodes can provide the
basis for a robust, expandable architecture for the UEWR. The processors for each type of processing
node can be selected / sized to meet the specific needs of the function performed by the node independent
of the other nodes. Additionally each node type can be upgraded individually without impacting the other
nodes. Though the overall system architecture is a strong candidate for reuse in the UEWR, the specific
hardware components used to implement the CDSM system architecture are not candidates for reuse.
Ideally, use of the current CDSM hardware and COTS components would provide for the least software
breakage possible. However, by retaining the same basic overall CDSM distributed processing
architecture, the breakage to the CDSM software could be reduced as the primary effort would be porting
of the software to the new processing equipment. Significant changes to the overall system architecture
would result in potentially much larger software breakage. The analysis included a detailed analysis of the
CDSM software and its potential for reuse in implementation of the UEWR.

70

6.2.3 Radar Architecture Migration Program

The Air Force has been conducting a program for the upgrade of the Early Warning Systems (EWS)
known as the Radar Architecture Migration Program (RAMP). RAMP focuses on PAVE PAWS, Ballistic
Missile Early Warning Systems (BMEWS) | &Il and COBRA DANE. RAMP does not specifically address
PARCS, however, the methodology used in RAMP is an effective tool for analyzing hardware and software
upgrade strategies, and the system architecture that will result from RAMP provides the optimum basis for
developing a new PARCS system. Portions of RAMP will be directly applicable to PARCS while other
PARCS unique functionality will be encapsulated into objects designed for compatibility with the RAMP
architecture.

The overall goals of RAMP are to reuse existing legacy radar systems software and to provide a common
architecture to assure future interoperability and affordable enhancements. IULS techniques offer
approaches for retaining the functionality of PARCS and for assuring interoperability with the RAM
architecture. The main processing element of the PARCS system is a symmetric multi-processing set of
embedded computers called the Central Logic and Control processors. These processors are identical
Harvard architecture machines (separate program and data store memories) that each executes a
scheduled, non-interruptible processing thread in parallel with the other CLC processors. These threads
are obtained from a common process queue and are scheduled by a distributed Tactical Operating System
(TOS).

The IULS toolset can be used to emulate this SMP architecture through the use of a multi-processor
PowerPC single board computer which is itself capable of symmetric multi-processing. The following
figure illustrates the configuration of a quad PowerPC single board computer, each of which is configured
with an IULS emulator CLC Dual Instruction Set Computer (DISC) emulator executing on it. The IULS
emulator CLC DISC would execute not only the legacy CLC processing threads, but the underlying TOS
binary code as well. /O mapping emulation software would interface to a new set of peripherals (disks,
tapes, printers, etc.), user display consoles (X-Windows UNIX workstations or WindowsNT PCs), and to
VME based radar sensor I/O interfaces.

Peripherals,
User Consoles,
&

Radar Sensor

10

Figure 55. IULS Emulation of PARCS SMP Architecture

71

Under RAM, component-based modeling is used to define the interfaces between the various components
that make up the radar systems and then integrating existing components to the maximum extent possible.
The goal is to find a large number of existing components that can be inserted into a common architecture
under a set of common APIs. The approach for integrating PARCS into RAM requires developing an
approach for re-using existing components of PARCS. To put it another way, how can PARCS
functionality be wrapped to conform to the RAM APIs.

Two approaches for this integration suggest themselves from the architecture of the PARCS symmetric
multi-processing (SMP) architecture. The first would be integration at the input/output (I0) layers of the
architecture, essentially keeping all of the PARCS data processing intact and operating as a unified whole
within the confines of the IULS emulation of the Central Logic and Control (CLC) processors embedded in
the PARCS system. The second approach would be the interfacing of individual processing threads within
the CLC to other reusable components that have been or will be developed for other RAM applications.

It should be noted that these two approaches are not mutually exclusive. That is, the bulk of the PARCS
functionality could be integrated into the RAM architecture with some of the internal process threads
replaced by reusable components from other systems encompassed by RAM. The 10 wrapped approach
lends itself to fairly easy segregation of PARCS processing algorithms from 10 presentation to the user.
This would make its implementation fairly straightforward with minimal knowledge of the legacy application
code required and thereby lowering the technical risk. On the other hand, the integration with RAM would
be at a fairly coarse level with little benefit from RAM reusable components. The second approach
requires more domain knowledge of the PARCS applications code and more careful design of the
wrappers to the IULS emulator execution thunks. This increases the technical risk but brings with it the
potential for greater use of RAM reusable components.

The IULS emulator capability of “thunking” would provide the “glue” needed to interface the legacy
software with the new UEWR interfaces and to disable sections of the legacy code that have been
replaced with the off the shelf components. Both of these processes could occur incrementally. Figure 52
shows how IULS emulator “thunks” could be used incorporate PARCS legacy code into the RAM Technical
Reference Architecture (TRM) COE compliant architecture.

72

\ Support Applications
Multi- | Communi- | Business | Environment | Database ! Engineering
Media | cations | Processing : Managemenl: Utilities : Support

Distributed
Computing

Services

_____________________ ==
Graphics Communicationg
Services | Services

I
|, Daa |
Management
: Services :
| | | : !
I (R OO N M -
Operating System Services

ystem
i’—j&\‘ Management
el —— Interationalization Services
r T 1 n

eeeeeee

oftware User
Engineering | Interface
ervi es

es:Sec

Data
Interchange |
Services |

"MOM" Conforming
Interface

Information

Interchange Users

Communications

.
"MOM" Conforming
Interface

COE Component
"Wrapper"

"MOM" Conforming RePLACE Emulator
Interface

COE Component
"Wrapper"

"Thunks"

T

COE Component BOS/TOS/Apps
"Wrapper"

Figure 56. IULS Emulator and RAM TRM

The process of integrating PARCS functionality into the COE compliant RAM architecture could proceed in
phases.

In the first phase, the PARCS legacy code (both applications and operating system code) is treated as a
black box that executes unmodified within the I[ULS emulator on new COTS hardware. There are a minimal
number of thunks implemented to allow the mapping of the legacy peripheral hardware onto new COTS
peripheral hardware.

The second phase integrates PARCS legacy code to the external world via COE compliant mechanisms. In
this phase the legacy code is still treated as a black box component, but the COE external mechanisms
are implemented using thunks and COE compliant wrappers. In this phase the basic Message Oriented
Middleware (MOM) architecture and interfaces are implemented. These interfaces include those with the
COTS OS and the inter-process communications between COE components. The COE wrappers conform
to the COE established interfaces and, in conjunction with the thunks, move data to/from the legacy code
from/to the external interfaces.

In the third phase, portions of the legacy applications code threads are replaced with reusable COE
compliant software components. The legacy code is still treated as a black box, but the COE components
are treated as white box components. The COE components along with the COE wrappers and thunks for
COE capability that is to be retained within the legacy code allow data to be moved into/out of the legacy
applications threads. Thunks are also used to disable portions of specific legacy applications threads,
which are then replaced with reusable COE components. As an example, the ITW/AA messages, which
are the Ballistic Missile Warning Attack Assessment, are already supported by PARCS. The other
messages could be synthesized from the PARCS trackfile processing by the insertion of thunks that then
communicate with the COE components that transmit the data using the ADCCP protocol to the
appropriate sites.

In the fourth phase the entire PARCS legacy applications and operating system code is replaced with COE
compliant components, eliminating the need for the IULS emulator.

73

Integrating PARCS into the broader UEWR architecture requires more detailed analysis. A preliminary
analysis of this question is summarized in the following tables. It should be noted however, although
emulation offers promise for porting portions of the current object code to a new architecture, it does not
address any of the maintainability issues cited in the reference materials. In particular, the absence of a
source baseline for PARCS is not addressed, nor are issues associated with maintaining an obsolete
CENTRAN source language.

Key System Architecture Features Pros / Cons
Processing Architecture - Symmetrical Multi-Processor architecture allows
throughput increase simply by adding additional
processors.

The TOS/BOS operating system architecture
requires much manual labor to break application
code into runable threads.
SAFEGUARD Processors - Will be insupportable in very near future

- Not DIl COE compliant
Not viable UEWR option
Radar Controller / Signal Processor - Dated equipment which will be become
insupportable in near future
Difficult to add NMD processing requirements
Not DIl COE compliant

Operator Interface - Dated and insupportable technology
Not DIl COE compliant

External Communication Devices - Dated and insupportable equipment

Operating System - Proprietary OS supported only on SAFEGUARD
Processors

Not DIl COE compliant
Not viable option

Table 13. PARCS System Architecture Analysis

74

Key Software Issues Pros / Cons

Support of UEWR and NMD - Provides the Early Warning and Space Surveillance
Requirements missions as is

Operator Interface software modifications required

Radar scheduling, commanding, and returns processing
modifications required

Tracking algorithm modifications may be required

Object typing and discrimination modifications required

Tasking Architecture - Basic tasking architecture is non-standard and requires
much manual preparation.

Use of overlays must be removed

Porting to alternative OS will cause much breakage in
applications and in preparation process.

Modifications to top level architecture will be required
to support NMD and migration to MOM or CORBA
based architecture

Implementation in SNX/CENTRAN - No support of SNX/CENTRAN on modern platforms

Reengineering to another language (e.g., Ada) will
require significant resources

OS Dependencies - Port to alternative OS will cause significant breakage
TTY and Card Reader based operator - Not DIl COE compliant
interfaces

Use of DIl COE compliant approach will result in high
breakage in operator interface software area

Management of disk based data via OS | - Use of OS file services reduces interoperability and
file services flexibility

Use of OS file services requires development of
application specific access code

Use of OS file services for persistent data provides
ability to tailor for performance considerations

Port to alternative OS will cause breakage in
applications.

Table 14. PARCS Software Architecture Analysis

6.2.4 PARCS and National Missile Defense

In February 2000, a preliminary presentation regarding the IULS PARCS domain analysis was provided to
personnel at the PARCS site. The briefing indicated that it did not appear that an incremental upgrade of
PARCS was cost effective and that it could not be initiated under IEIST funding. It was suggested that the
possibility of including PARCS in the National Missile Defense (NMD) infrastructure should be examined. In
response to this suggestion, a visit to Washington DC, to the Boeing NMD project was executed. It was
learned that PARCS is not presently included in the NMD architecture because inclusion of PARCS offers
no enhancement in NMD system effectiveness, which is measured by the percentage of incoming missile
threats, which are killed by NMD. In terms of early detection of in-coming missile threats, PARCS offers
no coverage which is not provided by another asset and PARCS detection of an incoming threat is not
sufficiently timely to enable successful engagement. However, it is possible to build a case for integrating
PARCS into the NMD architecture. Although PARCS offers no increase in system effectiveness, it does
offer an interim improvement in the Kill Assessment capability, until the time the Final SBIRS High satellite

75

is deployed (earliest 2008). Kill Assessment is not an NMD system requirement but is highly desired by
the NMD customer.

6.3 PARCS and IEIST

During March 2000 the status of the PARCS domain analysis was briefed to USSPACECOM personnel at
Peterson AFB. They were also told that incremental upgrade of PARCS would not be executed under
IEIST funding. At that time it was hoped that PARCS could be included as a node in the Joint Battlespace
Infosphere in one or more of the IEIST scenarios. During the aforementioned visit to the Boeing National
Missile Defense project, the potential for an IEIST NMD scenario was explored. The viability of including
the Perimeter Attack Characterization Radar System in the NMD architecture was also discussed. The
results of the meeting were not favorable in terms of identifying a candidate scenario. The primary
objectives regarding the IEIST scenario are: 1) integration of legacy embedded systems into the Joint
Battlespace Infosphere (JBI), 2) leveraging of IULS and related AFRL technologies and 3) building upon
the foundation scenario and architecture developed for WSOA/QUOTE. Based upon the information
exchange at the meeting, we did not believe that we could develop a credible NMD scenario, which
satisfies the primary IEIST objectives. NMD execution timelines are limited to very short duration (on the
orders of seconds) and extremely high system reliability because the NMD scenarios focus on weapons to
destroy in-coming ballistic missiles themselves, and not the launchers (which clearly do fit the IEIST
CONOPS). The consensus was that there is little or no potential fit between NMD and IEIST.

6.4 PARCS Summary

This IULS PARCS study was initiated to examine the feasibility of utilizing the IULS toolset to incrementally
upgrade PARCS to alleviate a hardware obsolescence problem. The analysis indicates that this could be
reasonably accomplished. However, part of the IULS upgrade process entails evaluation of the overall
cost effectiveness of the upgrade. The results here are not promising. Because of the obsolete and
unmaintainable nature of the PARCS software, incremental upgrade cannot be recommended.

An alternate approach of re-architecting PARCS under the RAMP program was examined. This approach
is viable and might be enhanced using IULS tools to assist in the process. We believe that emulation could
be applied to develop an interim product, but in the long-run maintainability issues need to be addressed.
Also, as we have indicated the selective use of code translator technology should be explored if a PARCS
upgrade program is initiated. It is believed that an IULS Technology Demonstration could be constructed
along these lines. It is suggested that an effort be undertaken to identify funding for this approach. A
starting point for generating the need could be the NMD interim Kill Assessment capability afforded by
PARCS. Certainly, continuation of its current space tracking function is an additional need for PARCS.

76

7 IULS CV-22 Transition

The objective of this on-going technology development is to demonstrate, extend, and transition IULS
toolset technology to the Air Force special operations variant of the V-22, denoted the CV-22. The
program began in July 2000. The current CV-22 system of the Special Operations Command (SOCOM)
includes an Advanced AYK-14 mission computer. Although not yet in full- scale production, the CV-22
faces problems including hardware obsolescence and limited growth potential. The CV-22 program
roadmap (following figure) identifies a major upgrade, Block 20, which will commence EMD in FY2002.

CV-22 Block Upgrade OPR: CV-22 SPO staff
Maj K. Cunningham
Features Strategy S ol
Multimode Radar (post CV-22 PMR draft 1) Rev C: 19 Nov 99
SIRFC
XV\'/';QSF“e' FYOO FYOl FY02 FY03 FY04 FYO5 FY06 FY07 FY08 FY09 FY10 FY1l

FE Display Pages '__BlockOEMD]
Airframe Provisions for: [NOTH: Block 19 as expegted in EMD contratt (about {o be let)
DIRCM I isct in QV-
_I Block 0 " 2 lot 5 Block 20 as plapned/discyssed in ¢V-22 PMR Nov 99

2nd Fwd Firing Disp [| Block [30 is notipnal - for Evolutiondry Acq planning

Cockpit Hoist Control
Trp Cmdr SA Connections [_| | slcle L T |

DIRCM Processor & AAR-54 ’EI>_| Block 10 6 lot 6
AVR-2A Laser Det]

Second Fwd Firing Disp /’i BIO(|:k 10 9 |lot7
|

Dual Digital Map

Relocate ALE-47 head/bus Block 20 EMD |
EW Bus Controller Backup I
Extendable Refueling Block 20 9 |[lot8

Probe (V22) / | Block20 | 9 Jloto
Full-up DIRCM Jam Turrets / |
EGI vice LWINS/MAGR (v22) % e

Addt'| SATCOM T
Block 30 9 lot 10

CAAP vice MMR / Flt Director Improvements I/

P
Turreted Gun (V22) 55556 ———1{ Block30 | 4 | |lot11
GCAWS (V22) In
= FMU Improvements

GANS/GATM = e V]

Cockpit Voice Rec - VADR ext Messages

TCAS CARP

Offboard NBC Director

Figure 57. CV-22 Program Roadmap

One of the key components of Block 20 is the Common Avionics Architecture for Penetration (CAAP),
starting in the in the 2001 time frame. CAAP has three main objectives: 1) Reduce enemy ability to detect
incoming SOF penetration aircraft; 2) Fuse off-board and on-board data for enhanced situational
awareness; and 3) Create a common processing architecture for all future SOF aircraft. Features of the
CAAP program are illustrated in the following figure. The CV-22 will require significant additional
processing resources to accommodate requirements for new and expanded capabilities for terrain
following and situation awareness as identified for CAAP. The CV-22 program is supporting a detailed
trade study to identify potential technologies for meeting these processor requirements.

77

e aapan

BLOSTD/G Special Receiver

GANS

Enhanced EW Bus |ntel Broadcast Receiver [R—
Situational | oces ::y
Awar eneSS Ger!era?ors /77
(ESA) ESA /S, DEM, Y T
\&Software DTD A/DCT%Da,ta \ &
USSOCOM o [y, Ay \
FY 00-05 POM | o
7§ Global
%l i D Access,
L B \ Navigation,&
42}“"f1| I‘ﬂ Safety
GANS (GANS)

Data Links
& Radios

Software é’

Figure 58. CAAP Program Elements

In this effort, IULS technology for automatic generation of wrapper software is being applied to investigate
migration of the CV-22 to a Commercial Off-The-Shelf processor (PowerPC) and incorporation of
prototype CAAP functionality. This effort includes development of a lab-quality COTS Replacement Box
(CRB) that incorporates significant and applicable components of CV-22 mission processing functionality,
and prototype CAAP functions for terrain following. The following figure depicts the CV-22 processor
architecture and CRB migration. Prototype CAAP processing to be "wrapped" into the mission processor
was selected from candidates including blended radar processing, data fusion, and enhanced situation
awareness. The Quiet Knight ATD, a precursor to CAAP, has demonstrated the feasibility and
effectiveness of CAAP technology, and provides a source of prototype CAAP software.

Advanced Mission Computer
MIPS Processor

Legacy
JASS OFP

RCM Operating System Program
(ROSP)

Legacy
Executive

IULS

COTS Replacement Box (CRB)

PowerPC Processor(s)

Legacy
JASS OFP

Prototype CAAP Functionality
* Terrain Following
 Blended Radar Processing

Bold Stroke
Infrastructure

* Situation Awareness
 Fusion

siaddeip

Ada Run-Time System (AdaRTS) |

Real-Time Object Request Broker

Figure 59. CV-22 Processor Architecture and CRB Migration

The effort supports key avionics upgrade trade studies being considered by the CV-22 for transition to an
open system architecture by providing performance benchmarks and risk reduction. The effort includes
both re-host activities to transition to the COTS processor, and incorporation of prototype CAAP
functionality. The IULS toolset developed under the IULS program is being applied to support automatic
generation of wrapper software for the new functionality.

78

This IULS TD program has significant potential carry-forward technology for the CV-22 program. First, it
will provide essential data supporting the CV-22 open system trade study by wrapping and rehosting JASS
software to an open system-based CRB. Second, it will verify performance, generate benchmark data,
and establish CRB growth potential to support CV-22 requirements by conducting CV-22 integration tests
to validate migration to a COTS processor. Finally, it will provide advanced risk reduction for SOCOM /
CV-22 and demonstrate transitionability of the IULS technology by "wrapping” prototype CAAP
functionality.

The CV-22 IULS effort represents a variation of the "rehost" wrapper approach. This technique leverages
extensive software development activity by the V-22 program in generation of the JASS Ada 83 baseline,
and facilitates potential re-use of Quiet Knight and other potential CAAP functionality. The rehost effort
provides a migration of the OFP from the legacy advanced AYK/14 processor to an open Bold Stroke
configuration. In the CV-22 case, the legacy advanced AYK/14 processor does not have the growth
potential to meet the demanding processing requirements for CAAP. Wrappers are being constructed
around the re-hosted software, and around the prototype CAAP software. The following figure shows the
legacy system and the wrapped demonstration system.

COTS Mission Processor PC
Single Card Processor Workstation
JASS Upgrade/PIM
Wrapper Applications Wrapper
Components —
EXEC Upgrade/PIM

WrappeL Wrapper o
Common = T

! Eternet | AR)
OFP Library | ~AEost CAAP thernet i o

Wrapper Components /
Reuse / 1/0 Services Wrapper Green Hills MULTI

Components Wind River Tornado
CV-22 Environment

VMEbus

Wrapper
Components

Figure 60. Legacy and Demonstration System Architecture

The Boeing Company is pursuing a very similar 'rehost' approach on the F-15E production program. In that
case, F15E flight software is being rehosted from the legacy Ada 83 software operating on the VHSIC
Central Computer to the Bold Stroke environment using Ada 95. This approach resulted from a
comprehensive trade study, which considered many different options for F-15E integration within Bold
Stroke environment. The following figure shows the options that were considered in the study. Option 4 -
Utilize Infrastructure Services - was selected for implementation. It provides rehosted Ada code on the
PowerPC and utilizes low-level Bold Stroke infrastructure services. Considerations that led to the selection
were: 1) Options 4 and 5 will minimize the cost of future SW enhancements and maintenance, by making it
easier to distribute the code and multi-thread the application; 2) Options 3, 4 and 5 will minimize the cost of
future H/W upgrades by insulating the user application from the underlying HW and operating system; and
3) Options 3,4, 5 provide a path for easier migration to a long term object oriented solution. The IULS CV-
22 program is able to directly utilize Ada bindings to the Bold Stroke infrastructure that were developed as

79

a direct result of this option. In addition, F-15E lessons learned on development of the new executive, use
of the infrastructure, and support for global /0O databases are being applied to the VC-22 TD program.

Option
1 2 3 4 5

Rehost to - Utilize Low-Level Utilize - -
Utilize vxWorks Utilize Avionics
Bare Infrastructure Infrastructure
. and CSS . . Interface Layer
Machine Services Services

Approach Rehost Ada Rehost Ada Rehost Ada Rehost Ada Rehost Ada

Use Avionics Level

IIE Al

Exec Routine New Exec New Exec New Exec Lz il (kv High Infra
Infrastructure Exec

Use of BS

Infrastructure Low Level Infra Low Level Infra Low Level Infra

Services

SEC @I css css css css

Services

Operating System vxWorks vxWorks vxWorks vxWorks

CPU Dy4 FFW Dy4 FFW Dy4 FFW Dy4 FFW Dy4 FFW

Logical Device HW HW HW HW HW

Interfaces

Figure 61. F-15E Options for Rehost

7.1 Foundation Programs

This element of the Incremental Upgrade of Legacy Systems demonstration program is based upon the
adaptation of the V-22 Osprey’s JASS Avionics Operational Flight Program (OFP). JASS is the embedded
avionics OFP that was designed and targeted for a custom built Advanced Mission Computer (AMC)
written entirely in the Ada-83 programming language. Components of the embedded operating system
components, provided by the computer manufacturer were written in Ada as well.

The development of the AMC and the operating system components were funded by the \-22 program
and the LAMPS Update program by Loral and Computing Devices International (currently known as
General Dynamics Information Systems). The JASS software application was designed as a single
Configuration Item (CI) integrating 13 functional areas. These areas include Aircraft Subsystems, Blade
Fold /Wing Stow, Central Integrated Checkout, Communications and Identification, Controls and Displays,
Electronic Warfare, Executive, Flight Director and Guidance, Mission Management, Multifunction Remote
Terminal Input Output, Navigation, and Tactical Sensors. The runtime system is based upon the Ada run-
time system that is included with the Rational Software VADS Ada Cross-Development System. The
runtime component provides a multitask, priority based, periodic operating system. Inter-task
communication is achieved by the use of mailboxes, allowing data and messages to be passed and
executed at the appropriate task priority.

This element of the IULS demonstration integrates portions of the JASS application software with CORBA-
compliant ORB software and a run-time system that is commercially available. The integration of these
software components then provides the foundation for the inclusion of additional avionics functionality that
can be integrated via an open system interface. The demonstration will also address the issues that
involve the use of multi-language implementations where the host application and the ORB interface will
utilize Ada and C++. Additional multi-language considerations will be determined during the assessment of
additional avionics functionality.

An early task in the transition effort was a trade to identify the JASS Functional Areas with the highest
relevance to CAAP. These are the best candidates for rehost to the Bold Stroke Architecture under the
IULS Transition effort. The following figure shows the initial component selection. It will be confirmed
through additional system analysis before the demonstration content is finalized.

80

Flight Director
nd Guidance

Controlsand
Displays

Multifunction Remote
Terminal Input Output

Central Integrated

Checkout Navigation

Tactical Sensors

Boldsiwoke | —— M|L-STD-1553B

Aircraft Subsystems

Figure 62. Tech Demo Components Selected for CAAP Relevancy (Preliminary)

The following figure illustrates the architectural organization of the software that will result from the CV-22
TD program.

JASS
(Ada 83) CAA
Infrastructure Services
Run Time Operating System
Board Support Package
Hardware (CPU, Memory, 1/0)

Figure 63. CV-22 Demonstration Software Architecture

7.2 IULS CV-22 Transition Benefits

The CV-22 IULS TD program provides extensive transition benefits to the CV-22 program. First, the IULS
TD program is demonstrating through execution of system level tests that the CRB incorporating the
rehosted / wrapped JASS software can successfully complete “red-lined” CV-22 test procedures. This
establishes the fidelity of the wrapping, and will provide a path that can affordably migrate the JASS OFP
from the legacy advanced AYK/14 to a much more powerful COTS Open System CPU. Moreover, this
effort demonstrates the use of software wrappers to enable incorporation of prototype CAAP functionality.
This will further demonstrate the growth potential of the COTS system and enable generation of system
benchmarks including spare capacity. The TD program represents a major risk reduction for the CV-22
program as it looks to develop its future end-state software and hardware architecture in preparation for
planned Block upgrades. The benefits of the IULS CV-22 Transition are captured in the following figure.

81

IULS AutoWrapper

Migrateto

L egacy OFP Ada95

(Ada 83)

...11001100011101
0101010101010101
0010111010010011
01000101010010...

L egacy
Pr ocessor

Adv. AYK-14 (MIPS)
L egacy System | ssues

e Limited / No Expandability
in current CPU to meet
SOCOM needs

 Proprietary processor and
system bus

COTS Replacement Box (CRB)
PowerPC Processor °

~
Legacy Candidate CAAP Functionality
JASS OFP « Terrain Following

« Blended Radar Processing

Bold Stroke . Situgtion Awareness o
Infrastructure || *Fusion
)
[Real-Time Object Request Broker]

Upgrade
Processor

Power PC
Tech Demo Outputs

Proof of Concept for CV-22
Open System Architecture
Candidate

Demonstrated Growth
Potential for CAAP
Function

Upgradeto CV-22 with
Candidate CAAP S/W using
[ULS Toolset to Auto Gen
Wrapper

Wrapping legacy S/IW
enablesincremental
upgrades and incremental
re-qualification

Figure 64. CV-22 Demonstration Outputs

82

8 Other Wrapper Applications and Upgrade Technology
This section will describe the application of software wrappers to other embedded systems and application
domains, and discuss related software technology that can be applied to the upgrade problem.

8.1 Other IULS Applications

8.1.1 Open Systems Architecture Wrappers

The IULS approach is currently being applied to reuse embedded software for the AFRL Weapon System
Open Architecture (WSOA) CRAD Project. The objective of the project is to prototype middleware and
application software to enable a weapon platform such an 15 and a command and control C2) platform
such as an AWACS to exchange images and to collaboratively replan a mission efficiently via a Link 16
network. The project's demonstration fighter node is F15E1, the same vehicle and processor/OFP used
for the IULS OWS demonstration described in Section 5. The OFP did not have a JTIDS processing
function to support the project. A mature JTIDS function was available from the F-15 production OFP that
supported the operation of a Class Il terminal, the Link-16 interface and cockpit display formats drivers.

As in the 15 OWS case, the reusable JTIDS software did not match the host language (Ada83 vs. C++)
or architecture (hierarchical vs. OO). IULS methodology was used to perform a brief FODA that indicated
that a wrapper was feasible and the best way to provide the F15 OFP with the JTIDS functionality. The
architecture of the OFP with wrapped JTIDS software is very similar to the OWS wrapper architecture
illustrated in Figure 17. The major differences are that the JTIDS components are larger and more self-
contained (the major data interfaces are internal PIMs between components), and they are all executed
only at a 20Hz rate. The software is at the “Design Wrapper” process step at the time of this writing.

In 1998, the use of IULS methodology was included in a Boeing (McDonnell Douglas) proposal to NASA to
upgrade the Space Shuttle’s avionics system. The Shuttle’s quad-redundant central computers have
obsolete processors and the OFPs are written in a unique, costly to maintain language called HAL. The
three approaches summarized in Section 3.1 were considered and variations were proposed. The
computers perform both mission and flight critical (inner-loop flight control) processing so the IULS tools
would have to be extended and their operations formally qualified for this domain by Honeywell. This task
is reasonable since Honeywell has another specialized tool in this family for flight control software, but it
would be out-of-scope for the IULS project. Due to programmatic issues including cost/schedule
constraints, NASA has not contracted an upgrade, and a new round of studies is currently in progress.

8.1.2 Wrappers For Scientific Computing

There is a large body of software written over the past 30 year that supports the engineering and scientific
community and is now becoming obsolete in terms of source and object language, host system
dependencies, and compatibility with new software systems including distributed processing. It is typically
written in early versions of FORTRAN running on dedicated mainframes or “minis” for one specialist user
and is rarely well documented.

The IULS project had a technical exchange with JPL staff members regarding the upgrading and reuse of
their optics analysis utility library. Their organization maintains a large library of similar applications and is
interesting in modernizing the software systems and making them more user-friendly. They had already
proposed and manually implemented wrappers for some applications, and they were intrigued by the
automated analysis and design capabilities of IULS. During the technical exchange, it was obvious that the
small interface size and uniqueness of each application would make the cost of analysis, modeling,
evaluation, and interface library-building with the LS toolset unjustifiable. Their work can serve as a
model for upgrading this domain of software.

8.1.3 Wrappers For Business and Information System Applications

There is a huge body of software written over the same period for the business and financial community
employing a wide variety of architectures, languages, APls, databases, and user interfaces. The most
common language is COBOL, and most common user access is dumb terminals and point of sale/entry
devices. The vision of most of the business world is “e-Business” that is being implemented in distributed,

83

heterogeneous processing and “Web-like” user interfaces. Upgrading and “Web-a-fying these systems is
currently a massive undertaking that uses wrappers/adapters to some extent.

The IULS team had several technical exchanges with the Boeing corporate data processing support group
that is responsible for this transformation within Boeing. We concluded that the IULS toolset was too
specialized (embedded, real-time) for this software domain although Honeywell conceptualized and
demonstrated how it could be extended for business applications, languages (including C++ and Java), and
interfaces. Major software and hardware manufactures (Oracle, Microsoft, Sun, IBM, etc.) now provide
this upgrade service with a wrapper approach as one of their techniques.

There is a growing body of academic research in classifying software architectures (notably at Carnegie
Mellon University), and then identifying techniques for resolving software component “packaging’
mismatches with wrappers, bridges, mediators, etc. [see Reference 3 in Section 10.1, Bibliography].
Wrappers are being implemented commercially for legacy data sources and database systems (as in
IBM’s Garlic project, [18]), and for systems interaction (brokers, agents, and protocols by Sun).

OO wrappers for DOD information systems were the subject of an Institute for Defense Analysis study for
the Defense Information Systems Agency in 1996. This work was described in the report Legacy System
Wrapping for DOD Information Systems Modernization [4]. Several migration strategies and guidelines
are described including SQL-to-Ada bindings for wrapping a database management system. A wrapper
generator, “Rapper”, was developed for a CIA database management system during a study by MITRE
Corporation that arrived at some of the same lessons learned as IULS [14].

8.2 Wrappers and Software Reuse

Since the IULS Project began in 1997, the software engineering discipline of reusable software has grown
and matured greatly. While the major thrust is designing for reuse and “product-line software
development”, much of the methodology can also be applied to software upgrades: domain analysis,
architectural patterns and modeling, and re-engineering or refactoring of existing software for reuse. The
Boeing Phantom Works OSA group has been a leader in reuse technology in the real-time embedded
object oriented software domain [23]. There are many technical papers and books, conferences, and
tutorials that describe software reuse technology in many software domains such as those by Ivar
Jacobsen [8].

8.3 Other Software Upgrade Approaches

Both DoD and the commercial world have developed upgrade techniques that are similar to IULS wrapper
approaches and/or share some of the same principles such as model-based re-engineering.

The first design activity of the “Rehost approach” typically consists of translation and/or recompilation of
the legacy software so it can be executed (re-used) on the upgraded processor inside a wrapper. Under
the Embedded Information System Re-Engineering (EISR) project for AFRL, Lockheed Martin is
developing an automation-assisted JOVIAL-to-C re-engineering capability that permits transformation of
both the software’s source language and architecture [12]. Automated JOVIAL-to-Ada translation was
used successfully by Boeing to rehost the C-17's Mission Computer OFP to the COTS CIP processors for
the upgrade described in Section 6.6.3 [17]. And the list of target processors supported by the USAF's
JOVIAL toolset has grown to include COTS processors [http://www.jovial.hill.af.mil].

A variation of the “Hybrid approach” employing a split processor chassis is being used in several upgrades.
Generally a new chassis is designed with sections for legacy modules and their backplane, and new
COTS-based modules and their backplane. A backplane bridge is designed to link the two sections
containing adapter software; additional wrappers are developed for the upgraded applications on the new
processor modules. For example, the new AV-8B “OSCAR” Weapon Processor contains COTS
processors on a VME backplane running re-engineered OFPs, and a section of legacy backplane housing
reused weapon interface modules that have no COTS equivalent (and would be too expensive to re-
engineer).

84

A variation of software-based legacy “Emulator approach” that was successfully demonstrated on IULS
and other programs, is the firmware or hardware-based emulator. For example, CPU Technologies has
produced a 1750 emulator “system-on-a-chip” that is being used to upgrade the F16’s radar processor
[http://www.cputech.com].

The problem of inserting new and upgraded software into real-time software architectures in a safe and
reliable manner is addressed by the Simplex Architecture from the Software Engineering Institute [22]. It
provides for the dynamic alteration of active systems, as well as fault tolerance and support for
heterogeneous languages and processors in a real-time system. It has been demonstrated a number of
times and is well-documented [http://www.sei.cmu.edu/simplex].

Simplex is a key element of the Incremental Software Evolution for Real-Time Systems (INSERT) R&D
program that Lockheed Martin is conducting for AFRL. It has produced a “COTS-based solution for
building high-assurance applications”. The “replacement” applications are run on top of an INSERT
middleware layer that insulates (wraps) them from the underlying RTOS and processor hardware, and
provides virtual memory partitioning and communication via asynchronous messaging. The INSERT system
has been demonstrated in a rehost of F-16 AFTI JOVIAL weapon delivery software from a 1750
processor to a Pentium processor [1].

8.4 Upgrade Tools and Modeling
Two technologies that IULS employs have expanded and matured since IULS was proposed: Model-based
software development and a related area, auto-code generation.

HTC’'s DOME and WrapidH are the practical foundation for the IULS methodology. Since IULS began, the
Unified Modeling Language (UML) has become the standard for object oriented software development, and
has successfully been implemented in software development systems such as Rational's Rose
[http://www.rational.com]. The DOME notation toolset includes a subset of UML but WrapidH was not
revised to include it. UML is a viable alternative to modeling existing as well as new application software
and wrappers, but the model could not be the source for to the IULS Honeywell analysis and code
generation capabilities. However, automatic generation of code from UML models in several HOLs is the
goal of integrated tool vendors such as Rational [15].

Generic patterns are now commonly used for characterizing and designing software. The publication of
the Gamma patterns book [6] formally introduced a basic family. Among the most useful are the Facade,
Adapter, and Proxy structural patterns, and the Mediator behavioral pattern. More specialized interface
patterns are especially valuable to describe wrapper design such as the Wrapper Facade [19], whose
intent is to “encapsulate low-level, stand-alone functions with OO class interfaces”.

Another example of a pattern application to wrapper design is the interface between OO software and
entity or relational databases (RDBs) that are common in business systems. They can be built with
generic data interface components through a data object generalization pattern [10] that is a generalization
of the data conversion wrapper components designed for the F-15 OWS wrapper.

Several code analysis tools were examined early in the IULS project for their usefulness in characterizing
legacy software during domain analysis that may require reverse engineering if the product is not well
documented. The McCabe toolset [http://www.mccabe.com], and in particular, the “Battlemap” was found
to be a valuable way to visualize existing Ada and C software. An evaluation copy of the Xinotech toolset
[http://www.xinotech.com] was acquired and applied to some of the legacy F15 code during the FODA
phase. Since the F15 OFP was well known and documented, the tool's output did not add much value.
However since that time, both toolsets have been enhanced and bundled with other tools. Xinotech is
promoted as a robust reengineering system and is being used successfully on the ESIR project that was
previously described. Another visualization/reverse-engineering toolset family that software reuse
designers have found useful is Understand for FORTRAN, Understand for Ada, and Understand for C from
Scientific Toolworks [http://scitools.com]. This type of analysis tool should be a part of the upgrade SEE
along with DoME and WrapidH.

There are a number of ongoing projects in industry and academia in the areas of tools and methodology for
software analysis, design, test, and documentation that could be applied to the upgrade process. For

85

example, DARPA/ITO under the Evolutionary Design of Complex Software (EDCS) program sponsored the
Capability Packaging for Avionics (CPAS) project at Northrop Grumman Corporation. CPAS integrated
EDCS technologies in three areas: Software understanding through visualization tools; incremental
analysis/test and certification tools; and architecture-driven design and composition tools. CPAS has been
applied to the B-2 avionics system software in preparation for incremental enhancement as well as ongoing
maintenance [http://www.northrop.com/cpas].

86

9 IULS Lessons Learned and Conclusion
This section summarizes some lessons learned during the project regarding software upgrades using
wrapper technology and the IULS methodology.

9.1 IULS Process

We found that following the wrapping process described in Section 3 does result in a reasonably well-
designed OFP for our F-15 applications, and several steps yielded lessons learned or are especially
noteworthy.

The most essential and time-consuming pre-design step was the characterization of the legacy software.
The older the software, the less likely that it has complete and/or accurate documentation including
comprehensive test cases. It is vital that a domain expert with tribal knowledge of the design and
operation be involved in the documentation of the data interfaces. Each interface parameter must be
analyzed and classified in minute detail as illustrated for the F-15 project in Section 4.3 and the data
mapping table in Appendix A. This table was in use until the final code corrections were made prior to
system integration. This task can be done more efficiently with the code parsing tools and re-engineering
tools mentioned earlier.

The wrapper control flow and top-level architecture were relatively easy to design because the wrapped
parts were modular and had straightforward execution dependencies. The wrapper designer has some
flexibility in this area, especially if unexecuted code and unused parameters can be left in the reused legacy
code after they are understood/documented.

Training on the IULS toolset and the RePLACE systems is required, even for experienced software
designers. Some experience with model-based software development is \ery helpful. Those doing the
detailed wrapper design and integration/test activities must be skilled in the wrapper language(s), and have
at least a working knowledge of the legacy/rehosted software language as well.

TRW'’s RePLACE system is relatively ndependent of the IULS toolset. Integrating the two was out of
scope for the current project. The domain analysis and characterization process steps must be completed
no matter which “back end” wrapper design process is employed.

Although the wrapper approach has been validated for upgrades in many software domains, the IULS
toolset is currently targeted to the embedded mission processing domain. The characterization steps are
widely applicable, but the model library and code generation steps are currently applicable to embedded
Ada and C code. The IULS toolset is most valuable for wrappers with larger data interfaces yet with
similar patterns and constructs. This allows the exploitation of the component library, class structures and
autocoding.

9.2 Upgrade Programmatics

Once the technical aspects of an upgrade have been addressed, an even greater challenge is addressing
the programmatic issues starting with the decision to preserve, maintain and upgrade or rather redesign
the system. This challenge is described by Schneidewind for the IEEE [20], Ragland for the USAF [16],
and in the IULS Final Technical Report, Task 1. Total re-engineering has many advantages if it is
affordable, including an opportunity to take control and document (e.g., “re-baseline”) the design using
improved methodology and tools after long periods of “maintenance”.

There are much-improved software cost estimating tools available such as Price S
[http://www.pricesystems.com] to characterize partial redesign (with some reuse), designing a
replacement from current requirements, or total re-engineering from fundamental requirements. The cost
of the wrapper itself is characterized as “automated software development”. A valuable reference with
regard to re-engineering is the Software Reengineering Assessment Handbook from the DOD Joint Group
on Systems Engineering [JLC-HDBK-SRAH].

It is a fact-of-life in most software domains that near-term funding is much easier to acquire than long term
for a number of reasons. Maintenance and minor upgrades are generally less costly and produce

87

immediate, identifiable returns whereas larger, longer-term re-engineering efforts are more costly and
promise less quantifiable life-cycle savings. The IULS approach to upgrades falls somewhere in between.

It is obvious from the IULS upgrade projects that the best opportunity to re-engineer for upgrade and
reuse is in conjunction with major functional or hardware upgrades. This is also the best context for
evaluating the use of an emulator wrapper. Life cycle costs must be analyzed and documented, including
the increasing cost of maintaining legacy requirements, documentation, and support software [21]. The
open systems upgrade planning process can be aided by lessons-learned from activities such as AVPLEX
which is a “Model for Avionics Upgrade Planning and Execution” [13].

One of the unstated goals of the project was to generalize the experiences and lessons-learned from the
case studies and demonstrations into an tool's algorithm or set of rules to guide a program in choosing
between re-engineering and wrapped upgrades, and among the wrapper approaches. One of the lessons-
learned, however, was that this determination is typically complex and unique for every program because
of the factors addressed in the preceding sections. Whilst a "template” based approach to determining
upgrade strategies is a good first step to weigh options, our experience has shown that each program
must systematically do the technical analysis (including the pre-design phases of the wrapper process), the
life-cycle analysis (including cost models), and the programmatic factor analysis to determine their best
course of action.

Tech transition is achievable (and has been demonstrated on IULS) but requires proving the technology
performs, and performs in ways that were not necessarily intended at design. Tech transition to a risk
averse production program requires constant attention, and close collaboration and risk mitigation
strategies. The tech transition path for an organization that does not have an existing relationship to the
production program is difficult at best and at times nearly impossible. Even when the technology has
proven itself, production programs may remain skeptical and need to be coaxed into accepting potential
risky technology.

Finally, transition success can ultimately depend on factors totally independent of the technology value.
The demonstrated value of the wrapper toolset was less relevant to the F-15 program after their roadmap
changed to embrace an Ada rehost vice a C++ re-engineering.

9.3 Summary
The IULS project has produced a near turn-key system to facilitate incremental improvements to fielded
weapon system avionics using software wrappers. A Software User Manual is available that contains
wrapper guidelines and architectures, and describes the use of the WrapidH toolset. The F15 OWS, C-
17 CCU, and CV-22 demonstrations described in the report are real-world examples of the application of
the IULS process..

The WrapidH toolset and current Wrapper Library are available from Boeing Phantom Works
[http://PhantomWorks.boeing.com] for installation and use on a PC/Windows Workstation. The Domain
Modeling Environment is also available from the project or can be downloaded directly (without cost) from
Honeywell [http://www.htc.honeywell.com/dome]. It is an extensible collection of integrated model editing,
meta-modeling, and analysis tools (including UML) supporting a model-based development approach to
system/software engineering in many software domains.

The specialized RePLACE™ toolset for developing emulation-based embedded software wrappers was
developed for AFRL by TRW-Dayton and is currently being employed on a number of embedded software
upgrade projects as well as the C-17 CCU upgrade. It is available from TRW [http://www.trw.com].

The wrapper approach to incremental avionics upgrades and enhancements is intuitively appealing, and a
number of projects that have heard about IULS have, at least, included the concept in their upgrade trade
space. It is a valuable resource in the growing effort to deal with aging aerospace vehicles and their
avionics. And it is coincident with the development of upgrade and reuse technology in many other
software domains.

88

10 Notes

10.1 Bibliography
The following materials are additional sources of information that were referenced by [number] and/or
found useful by the IULS project.

1.

2.

3.

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

Calloni, Ben, etal.,, INSERT: A COTS-Based Solution For Building High-Assurance Applications,
paper presented to the 18" Digital Avionics Systems Conference, 24-29 October 1999.

Cook, David and Leslie Dupaix, A Gentle Introduction to Software Engineering, USAF Software
Technology Support Center, 1999.

DeLine, Robert, A Catalog of Techniques for Resolving Packaging Mismatch, ACM, January 1999.
Diskin, David, Legacy System Wrapping for DOD Information System Modernization, Institute for
Defense Analysis for the Defense Information System Agency, Joint Interoperability & Engineering
Organization, 1996.

Floyd, Jon and Phil Mastrolia, The DOD Generic Fighter: F-22's Historical Foundation; paper
presented to the Seventh Annual Software Technology Conference, 14 April 1995.

Gamma, Eric, et.al.,, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

Garnett, Lucy, Wrapping Objects, Journal of Object Oriented Programming, January 1997.

Jacobsen, Ivar, et.al., Software Reuse; Architecture, Process and Organization for Business
Success, Addison Wesley, 1997.

Kang, Kyo C., et al; Feature-Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-
21, ESD-90-TR-222); Software Engineering Institute, Carnegie Mellon University, November 1990.
Kwon [-Myoung, et.al.,, Building Generic Data Interface Components through a Data Object
Generalization Pattern, Journal of Object-Oriented Programming (JOOP), October 2000.

Laufmann, S. C., Toward Agent-Based Software Engineering for Information-dependent Enterprise
Applications, IEE Proceedings — Software Engineering, Vol. 144, No. 1, February 1997.

Littlejohn, Kenneth and Michael DelPrincipe, Embedded Information Systems Re-Engineering, paper
presented to the 18™ Digital Avionics Systems Conference, 24-29 October 1999.

Logan, Lt Col Glen and Charles Hurst, AVPLEX, A Model for Avionics Upgrade Planning and
Execution, paper presented to the 18" Digital Avionics Systems Conference, 24-29 October 1999.
Mattox, David with Len Seligman and Ken Smith, Rapper: A Wrapper Generator With Linguistic
Knowledge, ACM, February 1999.

Mellor, Stephen, Automatic Code Generation from UML Models, one of series of articles in C++
Report, June 1999.

Ragland, Bryce and Michael Olsem; Maintain Legacy Software or Reengineer?, article in CrossTalk
Magazine, The Journal of Defense Software Engineering, April 1996.

Rhine, Keith, The C-17 Core Integrated Processor (CIP) Project, paper presented to the 16" Digital
Avionics Systems Conference, 5 November 1997.

Salzberg, Don’t Scrap It, Wrap It! A Wrapper Architecture For Legacy Data Sources, ACM SIGMOD
Digital Review, 1999.

Schmidt, Douglas, Wrapper Facade: A Structural Pattern for Encapsulated Functions within Classes,
C++ Report, February 1999.

Schneidewind, Norman and Christof Ebert, Preserve or Redesign Legacy Systems, IEEE Software
Journal, July/August 1998.

Schneidewind, Norman, Now To Evaluate Legacy System Maintenance, IEEE Software Journal,
July/August 1998.

Sha, Liu, Ragunathan Rajkumar, and Michael Gagliardi: Evolving Dependable Real-Time Systems;
Software Engineering Institute, Carnegie Mellon University, 1996.

Sharp, David, Containing and Facilitating Change Via Object Oriented Tailoring Techniques, paper
presented to the 12™ Software Technology Conference, 30 April — 5 May 2000.

89

Acronyms and Abbreviations

ADCP Advanced Display Core Processor (F-15)

ADL Architecture Description Language

AFRL Air Force Research Lab

AIDS Aircraft Integrated Data System

AISF Avionics Integration Support Facility (C-17)

AL Assembly language

API Application Program Interface

APM, A/IPDMC Avionics/Propulsion Data Management Computer (C-17)

ARINC Aeronautical Radio, Inc.

AVMUX Avionics multiplex bus

A/A Air-to-Air

AlG Air-to-Ground

BIF Built-In Function

BIT Built-In Test

BTOS Basic Operating System

CAAP Common Avionics Architecture for Penetration

CAU Cautions

CCu Communication Control Unit (C-17)

CFT Conformal fuel tanks (F-15)

CIP Core Integrated Processor (C-17)

CLC Central Logic and Control (PARCS)

CLD Critical Local Data

CNAV Common Navigation

COE Common Operating Environment

CNI Communication, Navigation, Identification

COFP Common OFP (Boeing IRAD project)

CONOPS Concept of Operations

CORBA Common Object Request Broker Architecture

COSA Communication Open System Architecture

Cossl Commercial Operations and Support Savings Initiative, Dual Use Applications Program

COTS Commercial Off-the-Shelf

CPM Computer Processor Module

CPS Cabin, Pressure Sensor (Controller)

CPU Central Processing Unit

CRAD Contracted Research and Development

CRB COTS Replacement Box (C-17)

CRT Cathode Ray Tube

CSC Computer Software Component

C/D Control and Display

DMA Direct Memory Access

DoME Domain Modeling Environment

DPM Data Processor Module

DSSSL Document Style Semantics and Specification Language

DTE Desktop Test Environment

EEC Engine, Electronic Control

EWS Early Warning System

EXEC Executive

FCC Flight Control Computer

FODA Feature-Oriented Domain Analysis

FTR Flight Test Recorder

GATM Global Air Traffic Management

GDIS General Dynamics Information Systems (formerly Control Data, “CDInt"),
[http://www.gd-is.com]

GP General Purpose (Processor)

GSE Ground Support Equipment

HOL High Order Language

90

HTC Honeywell Technology Center

HS Hamilton Standard

HSDB High Speed Data Bus

HUD Head-Up Display

H/W Hardware

IBIT Initiated BIT

IDEF Integrated Computer-Aided Manufacturing Definition Language
[EIST Insertion of Embedded Infosphere Support Technologies
IOM Input/Output Module (F-15)

IOP Input/Output Processor

IRMS Integrated Radio Management Systems (C-17)
ISA Instruction Set Architecture

/0 Input/Output

IULS Incremental Upgrade of Legacy Systems
JASS Joint Vertical Experimental Avionics System Software
LCD Liquid Crystal Display

LM Lockheed Martin

MDA McDonnell Douglas Aerospace (now Boeing)
MC Mission Computer

MCK/MCD Mission Control Keyboard/Display

MLP Memory Loader Program

MMU Memory Management Unit

MPDP Multi-Purpose Display Processor (F-15)

MSIP Multi-Stage Improvement Program (F-15)
MTA Boeing Military Transport Aircraft

MUX Multiplex Bus

NAV Navigation

NMD National Missile Defense

NVRAM Non-Volatile RAM

OFP Operational Flight Program

o]e) Object-Oriented

ORB Object Request Broker

OSCAR Open Systems Core Avionics Requirements
OTS Off-the-Shelf

OowWs Overload Warning System (F-15)

o/s Operating System

PARCS Perimeter Attack Radar Characterization System
PIM Process Interface Message (F-15)

PML Performance Model Library

PROM Programmable Read-Only Memory

RAM Random Access Memaory

RAMP Radar Architecture Migration Program

RCF Radio Control Function (C-17)

RePLACE Reconfigurable Processor for Legacy Avionics Code Execution (TRW)
RFP Request for Proposal

RISC Reduced Instruction Set Architecture

RTOS Real-Time Operating System

RTS Run-Time System or Software

SEE Software Engineering Environment

SEI Software Engineering Institute

SLOC Software Lines of Code

SMP Symmetrical Multi-Processing

SOF Special Operations Forces

SRAM Semiconductor (volatile) RAM

SUM Software User Manual

SUROM Start-Up Read Only Memory

SIW Software

TCAS Traffic Alert and Collision Avoidance Systems

91

TD
TOS
UML
UFC
VCC
VHDL
VME
WACS
WSOA
WSSTS

Technology Demonstration

Tactical Operating Systems

Unified Modeling Language

Up Front Control

VHSIC Central Computer (F-15)

VHSIC Hardware Description Language

Versa Module Eurocard

Warning and Cautions System (C-17)

Weapon System Open Architecture

Weapon System Software Technology Support

92

Glossary

Architecture - The high level packaging of functions and data to implement an application.

Architecture modeling - Mapping the domain model to a software architecture to solve domain
problems.

Context - The environment in which the software exists.

Context Analysis - Establishing the scope and environment of a domain, and identifying the external
conditions and interfaces, which cause variations.

Domain - A class of software that provides services for solving a similar set of problems (applications
or capabilities).

Domain Modeling - Identifying the common features/problems addressed by the software domain using
models. A domain model defines the functions, objects, data, and their relationships in the domain.

Feature - A prominent, distinctive characteristic or behavior.

Feature Oriented Domain Analysis - Aggregation and generalization to capture the commonality in
software applications using the process of context analysis, domain modeling, and architecture
modeling.

Patterns - Design patterns provide guidelines for applying the reference architecture and components to
different domains and contexts.

Reference architecture - Provides examples, which are used as a guideline or template for developing
the actual wrapper architecture for an upgrade.

Repository of components - A collection of components including primitive wrapper parts and execution
environments that can be picked up by the tool to construct an upgrade wrapper.

93

Appendix A. Overload Warning System / Common OFP Mapping Table

F-15 OWS PIM

F-15 COFP

D_ADC_20HZ_INPUT_PIM

MACH_NUMBER : Mach;
type Mach is new Real range -
20.0.. 20.0;

AS5ADP.h(57): const BQualityDouble& GetMach();

Ex. theASADP_Ptr->GetMach()

Returns reference to BqualityDouble — GetValue() returns
mach/double/dimensionless, IsValid() returns bool.

D_ADC_20HZ_INPUT_PIM

LOCAL_ANGLE_OF ATTACK
: Cockpit_Units;
type Cockpit_Units is new Real;

AS5ADP.h(56): const BAnglePiOver2& GetlLocalAngleOfAttack();
Ex. theASADP_Ptr_-> GetLocalAngleOfAttack().GetAngle()
Returns reference to BAnglePiOver2 —

BAglePiOver2 derived from class Bangles — GetAngle() returns
Local Angle Of Attack/double/radians limited to —Pi/2 to Pi/2.

D_ADC_20HZ_INPUT_PIM

LOCAL_ANGLE_OF_ATTACK

VALID : Boolean;

A5ADP.h(56): const BAnglePiOver2& GetlLocalAngleOfAttack();
Ex. theASADP_Ptr_-> GetLocalAngleOfAttack().IsValid()
Returns reference to BAnglePiOver2 —

BAglePiOver2 derived from class Bangles -- IsValid() returns bool

D_ADC_20HZ_INPUT_PIM

BARO_CORRECTED_
PRESSURE_ALTITUDE : Feet;
type Feet is new Real;

AS5ADP.h(123): const virtual BqualityDouble&
GetBaroCorrectedPressureAltitude();

Ex. theASADP_Ptr_-> GetBaroCorrectedPressureAltitude()
Returns reference to BqualityDouble — GetValue() returns Baro
Corrected Pressure Altitude/double/ft, IsValid() returns bool.

D_ADC_20HZ_INPUT_PIM

TRUE_ANGLE_OF_ATTACK :
Elevation_Type;

subtype Elevation_Type is
Radians range -Pi/ 2.0 .. Pi/
2.0;

type Radians is new Real range
-3.0*Pi..3.0*Pj;

AS5ADP.h(64): const BAnglePiOver2& GetTrueAngleOfAttack();
Ex. theASADP_Ptr_-> GetTrueAngleOfAttack()

Returns reference to BAnglePiOver2 —

BAglePiOver2 derived from class Bangles — GetAngle() returns
True Angle Of Attack/double/radians limited to —Pi/2 to Pi/2,
IsValid() returns bool.

D_ADC_20HZ_INPUT_PIM

PRESSURE_RATIO : Unitless;
type Unitless is new Real;

A5ADP.h(61): const BQualityDouble& GetPressureRatio();

Ex. theASADP_Ptr_-> GetPressureRatio()

Returns reference to BqualityDouble — GetValue() returns pressure
ratio/double/dimensionless, IsValid() returns bool.

D_AFCS_20HZ_INPUT_PIM

MODE_DISCRETE_WORD
.SPIN_RECOVERY_DISPLAY :
Boolean;

AS5AFCS.h(98): inline bool GetSpinRecoveryDisplay();

Ex. theASAFCS_Ptr_-> GetSpinRecoveryDisplay()

Returns bool which can be used to populate the appropriate bit in
D_AFCS_20HZ_INPUT_PIM.PIM.MODE_DISCRETE_WORD.
SPIN.DISCOVERY.DISPLAY

D_AFCS_20HZ_INPUT_PIM

MODE_DISCRETE_WORD
LANDING_GEAR_HANDLE_
IS_UP : Boolean;

AS5AFCS.h(76): inline bool GetLandingGearHandlelsUp();

Ex. theASAFCS_Ptr_-> GetLandingGearHandlelsUp()

Returns bool which can be used to populate the appropriate bit in
D_AFCS_20HZ_INPUT_PIM.PIM. MODE_DISCRETE_WORD.
LANDING_GEAR_HANDLE_IS UP

D_AFCS_20HZ_INPUT_PIM

MODE_DISCRETE_WORD
.YAW_RATE_TONE_
PRIORITY : Boolean;

A5AFCS.h(110): inline bool GetYawRateTonePriority();

Ex. theASAFCS_Ptr_-> GetYawRateTonePriority();

Returns bool which can be used to populate the appropriate bit in
D_AFCS_20HZ_INPUT_PIM.PIM. MODE_DISCRETE_WORD.
YAW_RATE_TONE_PRIORITY

D_AFCS_20HZ_INPUT_PIM

R_H_STABILATOR_RAM_
POSITION : Degrees;

type Degrees is new Real
range -360.0 .. 360.0;

A5AFCS.h(92): const BQualityDouble&
GetRH_StabRamPosition();

Ex. theASAFCS_Ptr_-> GetRH_StabRamPosition();

Returns reference to BqualityDouble — GetValue() returns RH
Stabilator RAM Position/double/radians.

D_AFCS_20HZ_INPUT_PIM

RIGHT_STAB_MAIN_RAM_
POS_IS_VALID

D_OWS_20 HZ_LIB.perform_v
alidity_checks.ada
Validity_Word.Right_Stab_Mai
n_RAM_Pos_Is_Valid :
Boolean;

A5AFCS.h(93): ASAFCS.h(92): inline bool
GetRightStabMainRamPoslsValid();

Ex. theASAFCS_Ptr_-> GetRightStabMainRamPoslsValid();
Returns bool to be used for
RIGHT_STAB_MAIN_RAM_POS_IS_VALID.

94

F-15 OWS PIM

F-15 COFP

D_AFCS_20HZ_INPUT_PIM

L_H_STABILATOR_RAM_
POSITION : Degrees;

type Degrees is new Real
range -360.0 .. 360.0;

AS5AFCS.h(83): const BQualityDouble&
GetLH_StabRamPosition();

Ex. theASAFCS_Ptr_-> GetLH_StabRamPosition();

Returns reference to BqualityDouble — GetValue() returns LH
Stabilator RAM Position/double/radians.

D_AFCS_20HZ_INPUT_PIM

LEFT_STAB_MAIN_RAM _
POS_IS_VALID
D_OWS_20_HZ_LIB.perform_v
alidity_checks.ada
Validity_Word.Left_Stab_Main
_RAM_Pos_Is_Valid : Boolean;

A5AFCS.h(82): ASAFCS.h(92): inline bool
GetRightStabMainRamPoslsValid();

Ex. theASAFCS_Ptr_-> GetLeftStabMainRamPoslsValid();
Returns bool to be used for
LEFT_STAB_MAIN_RAM_POS IS VALD.

D_AFCS_20HZ_INPUT_PIM

ROLL_RATE:
Radians_Per_Sec;

type Radians_Per_Sec is new
Real;

AS5AFCS.h(94): const BQualityDouble& GetRollRate();

Ex. theA5AFCS_Ptr_-> GetRollRate();

Returns reference to BqualityDouble — GetValue() returns Roll
Rate/double/radians/sec.

D_AFCS_20HZ_INPUT_PIM

YAW_RATE :
Radians_Per_Sec;

type Radians_Per_Sec is new
Real;

AS5AFCS.h(108): const BQualityDouble& GetYawRate();

Ex. theASAFCS_Ptr_-> GetYawRate();

Returns reference to BqualityDouble — GetValue() returns Yaw
Rate/double/radians/sec.

D_AFCS_20HZ_INPUT_PIM

VALIDITY_WORD.YAW_
RATE_IS_VALID : Boolean;

AS5AFCS.h(109): bool GetYawRatelsValid();

Ex. theASAFCS_Ptr_-> GetYawRatelsValid();

Returns bool to be used directly in D_AFCS_20HZ_INPUT_PIM.
VALIDITY_WORD.YAW_RATE_IS_VALID

D_AFCS_20HZ_INPUT_PIM

VALIDITY_WORD.ROLL_
RATE_IS_VALID : Boolean;

AS5AFCS.h(95): bool GetRollRatelsValid();

Ex. theASAFCS_Ptr_-> GetRollRatelsValid();

Returns bool to be used directly in D_AFCS_20HZ_INPUT_PIM.
PIM.VALIDITY_WORD.ROLL_RATE_IS VALID

D_AFCS_20HZ_INPUT_PIM

LATERAL_STICK_FORCE :
Pounds range -20.0 .. 20.0;
type Pounds is new Real;

ASAFCS.h(79): const BQualityDouble& GetLateralStickForce();
Ex. theASAFCS_Ptr_-> GetLateralStickForce();

Returns reference to BqualityDouble -- GetValue() returns lateral
stick force/double/lbs

D_AFCS_20HZ_INPUT_PIM

LATERAL_STICK_FORCE_
IS_VALID : Boolean;

AS5AFCS.h(80): bool GetLateralStickForcelsValid();
Ex. theASAFCS_Ptr_-> GetLateralStickForcelsValid();
Returns bool to be used directly in
D_AFCS_20HZ_INPUT_PIM.PIM.
LATERAL_STICK_FORCE_IS_VALID

D_AIU_20HZ_INPUT_PIM

NAV_POD_PRESENT :
Boolean;
TGT_POD_PRESENT :
Boolean;

A5AIU.h(427): const AIU_PodStatusType&
GetAlU2_PodStatus();

Ex. theASAIU_Ptr_-> GetAlU2_PodStatus();

Returns reference to PodStatusType which is a structure defined
in ASAIU2_Types.h. PodStatusType-> NAV_podPresent is bool
which can be used to populate D_AIU_20HZ_INPUT_PIM.
PIM.NAV_POD_PRESENT and PodStatusType->
TGT_podPresent is bool which can be used to populate
D_AIU_20HZ_INPUT_PIM. PIM.TGT_POD_PRESENT

D_GEN_20HZ_UNPACK_PIM

SAFED_OFF_WEIGHT_OFF_
WHEELS : Boolean;

A5WeightOffWheels.h(106): inline bool
GetWeightOffWheelsSafedOff();

Ex. theASWOW_LD_Ptr_-> GetWeightOffWheelsSafedOff();
Returns bool to be used directly in
D_GEN_20HZ_UNPACK_PIM.
PIM.SAFED_OFF_WEIGHT_OFF_WHEELS

D_INS_20HZ_INPUT_PIM

NORMAL_ACCELERATION :
Feet_Per_Sec_Squared;

type Feet_Per_Sec_Squared is
new Real;

AS5INS.h(88): const BQualityDouble& GetNormalAcceleration()
Ex. theA5INS_Ptr_-> GetNormalAcceleration()

Returns reference to BqualityDouble — GetValue() returns Normal
Acceleration/double/ft/sec2.

D_INS_20HZ_INPUT_PIM

ALIGN_STATUS
.GYROCOMPASS_ALIGN :
Boolean;

A5INS.h(67): const INS_AlignStatusType& GetAlignQuality();
Ex. theA5INS_Ptr_-> GetAlignQuality();

struct AlignStatusType. gyroCompassAlign is bool to be used for
ALIGN_STATUS.GYROCOMPASS_ALIGN

95

F-15 OWS PIM F-15 COFP

D_INS_20HZ_INPUT_PIM ALIGN_STATUS.STORED_ A5INS.h(67): const INS_AlignStatusType& GetAlignQuality();
HEADING_ALIGN : Boolean; Ex. theA5INS_Ptr_-> GetAlignQuality();

struct AlignStatusType. storedHeadingAlign is bool to be used for
ALIGN_STATUS.STORED_HEADING_ALIGN

D_INS_20HZ_INPUT_PIM Inu_Status.POSITION_AND_ A5INS.h(123): bool GetPositionAndVelocityValid();
VELOCITY_VALID : Boolean; Ex. theASINS Ptr_-> GetPositionAndVelocityValid();
D_INS_20HZ_INPUT_PIM Inu_Status. ATTITUDE_VALID : | A5INS.h(71): bool GetAttitudeValid();
Boolean; EXx. theA5INS Ptr_-> GetAttitudeValid();
D_INS_20HZ_INPUT_PIM Inu_Status.BARO_INERTIAL_A | AS5INS.h(73): bool GetBarolnertialAltitudeValid();
LTITUDE VALID Ex. theASINS Ptr_-> GetBarolnertialAltitudeValid();
D_PACS_20HZ_INPUT_PIM NUC_TRNG_SELECTED: A5UPACS.h(56): const ASUPACS_NucDataStructType&
Boolean; GetAS5UPACS_NucData();

Ex. theASUPACS_Ptr_-> GetASUPACS_NucData();

Returns reference to ASUPACS_NucDataStructType.
NucTrainingSelected is bool which can be used directly for
D_PACS 20HZ_INPUT_PIM.PIM. NUC_TRNG_SELECTED.

96

Appendix B. Overload Warning System Parameter Stubbing Table

F-15 OWS PIM

F-15 COFP

D_GEN_10HZ_UNPACK_PIM

BRU_STATION_WEIGHT :
D_Ows_Types.Sta_2_8_5 Array_Type;
type Sta_2_8_5_Array_Type is array

—~
[}
o
)
N
®
al|
i

I:U
_‘

<

°
®
=
Q
35

Q
@
(92}
o

®
N
(92}
o

®
o
<
o
S

Reft);
type Pounds is new Real;

Not available in demo configuration —
Use PACS training Capability

If (ABUPACS_ Station.stations[STA_X]
.merPresent) Stub to
BRU_STATION_WEIGHT(STA-X) =0
Ibs, else
BRU_STATION_WEIGHT(STA-X) =
524.0 Ibs for X=2,5,8

D_GEN_10HZ_UNPACK_PIM

CFT_STATUS_FLAG : Cft_Type;
type Cft_Type is (None, Cft 4, Cit_3);

Not available in demo configuration —
Stub to CFT_STATUS_FLAG = CFT_4.

D_GEN_10HZ_UNPACK_PIM

AG_WEAPON_COUNT :
D_Ows_Types.Ag_Weapon_Count_Array_Type;
type Ag_Weapon_Count_Array_Type is

Reft);
type Integer _Short is range -32768 .. 32767,

Not available in demo configuration —
Use PACS training Capability

Stub to
AG_WEAPON_COUNT(STA_X) =
A5UPACS_ Stations.stations[STA_X]
.wpnCount for X=2,5,8

D_GEN_10HZ_UNPACK_PIM

LAUNCHER_WEIGHT :
D_Ows_Types.Sta_2_8_Array_Type;
type Sta_2_8_Array_Type is array

Rcft);
type Pounds is new Real;

Not available in demo configuration —
Stub to LAUNCHER_WEIGHT(STA_2)
= LAUNCHER_WEIGHT(STA_8)=0
Ibs. Note
LAUNCHER_WEIGHT(STA_5) is not
defined.

D_GEN_10HZ_UNPACK_PIM

PYLON_WEIGHT :
D_Ows_Types.Sta_2_8_5_Array_Type;

Type Sta_2_8 5 Array_Type is array

Rcft);
Type Pounds is new Real;

Not available in demo configuration —
Use PACS training Capability

If (theASUPACS_ptr-
>GetPylonPresentSta2()) Stub to
PYLON_WEIGHT(STA_2) = 500.0;
Else PYLON_WEIGHT(STA_2) =0.0;
if (theASBUPACS_ptr-
>GetPylonPresentSta5()) Stub to
PYLON_WEIGHT(STA_5) = 300.0;
Else PYLON_WEIGHT(STA_5) =0.0;
if (theASUPACS_ptr-
>GetPylonPresentSta8()) Stub to
PYLON_WEIGHT(STA_8) = 500.0;
Else PYLON_WEIGHT(STA_8) =0.0;

97

F-15 OWS PIM

F-15 COFP

D_GEN_10HZ_UNPACK_PIM

AG_STATION_ID_CODE :
D_Ows_Types.Ag_Station_Id_Code_Array_Type;
type Ag_Station_Id_Code_Array_Type is array

Rcft);

type Ag_Store_Type is (None, Mk_82, Mk_82Se, Mc_1,
Mk_84, Mk_82Ar, Mk_84Ar, Bdu_33, Cbu_52, Cbu_58,
Cbu_71, Cbu_87, Cbu_89, Cbu_97, Spare_14,
Spare_15, Suu_20, Suu_20M, Suu_20N, Mk_20,
Agm_65A, Agm_65B, Agm_65D, Agm_65G, Gbu_15S,
Gbu_10A, Gbu_10M, Gbu_12B, Gbu_12C, Gbu_15L,
Tgbu_15, Gbu_24, Axq_14, Unknown, Mxu_648, Idip,
Fuel, Spare_37, Alq_119, Alg_131, Blu_107, Gbu_10B,
Spare_42, Spare_43, Gbu_24A, Gbu_28, Agm_130A,
Agm_130C, Tgm_65A, Tgm_65B, Tgm_65D, Tgm_65G,
Spare_52, Spare_53, Spare_54, Spare_55, Spare_56,
Spare_57, Spare_58, Spare_59, Spare_60, Spare_61,
Spare_62, Spare_63, Spare_64, Spare_65, Spare_66,
Spare_67, Spare_68, Spare_69, Spare_70, Spare_71,
Spare_72, Spare_73, Spare_74, Spare_75, Spare_76,
Spare_77, Spare_78, Spare_79, Spare_80, Spare_81,
Spare_82, Spare_83, Spare_84, Spare_85, Spare_86,
Spare_87, Spare_88, Spare_89, Spare_90, Spare_91,
Spare_92, Spare_93, Spare_94, Spare_95, Spare_96,
Spare_97, Spare_98, B61_0, B61_10, B61_2, B61_3,
B61 4,B61_5);

Not available in demo configuration —
Use PACS training Capability
Stubto:
AG_STATION_ID_CODE(STA_X) =
AS5UPACS_Stations.stations[STA_X]
.storeLoaded for X=2,5,8

D_GEN_10HZ_UNPACK_PIM

AA_STA_2A MISSILE_WEIGHT_FLAG:
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to: 0 Ibs

D_GEN_10HZ_UNPACK_PIM

AA_STA_2B_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to: 0 Ibs

D_GEN_10HZ_UNPACK_PIM

AA_STA_8A MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to: 0 Ibs

D_GEN_10HZ_UNPACK_PIM

AA_STA_8B_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to: 0 Ibs

D_GEN_10HZ_UNPACK_PIM

AA_STA_3 _MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to: 0 Ibs

D_GEN_10HZ_UNPACK_PIM

AA_STA_4 MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to: 0 Ibs

D_GEN_10HZ_UNPACK_PIM

AA_STA 6_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to: 0 Ibs

D_GEN_10HZ_UNPACK_PIM

AA_STA_7_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to: 0 Ibs

D_GEN_10HZ_UNPACK_PIM

TANK_PRESENT : D_Ows_Types.
Tank_Present_Array_Type;
type Tank_Present_Array_Type is

Rcft);

Not available in demo configuration —
Stub to TANK_PRESENT(STA_2) =
TANK_PRESENT(STA_8) =
TANK_PRESENT(STA_5) = False.

98

F-15 OWS PIM

F-15 COFP

D_GEN_10HZ_UNPACK_PIM

RIGHT_CFT_AG_WPN_IDENT_CODE :
U_Pacs_Types.Ag_Store_Type;

type Ag_Store_Type is (None, Mk_82, Mk_82Se, Mc_1,
Mk_84, Mk_82Ar, Mk_84Ar, Bdu_33, Cbu_52, Cbu_58,
Cbu_71, Cbu_87, Cbu_89, Cbu_9, Spare_14, Spare_15,
Suu_20, Suu_20M, Suu_20N, Mk_20, Agm_65A,
Agm_65B, Agm_65D, Agm_65G, Gbu_15S, Gbu_10A,
Gbu_10M, Gbu_12B, Gbu_12C, Gbu_15L, Tgbu_15,
Gbu_24, Axg_14, Unknown, Mxu_648, Idip, Fuel,
Spare_37, Alg_119, Alg_131, Blu_107, Gbu_10B,
Spare_42, Spare_43, Gbu_24A, Gbu_28, Agm_130A,
Agm_130C, Tgm_65A, Tgm_65B, Tgm_65D, Tgm_65G,
Spare_52, Spare_53, Spare_54, Spare_55, Spare_56,
Spare_57, Spare_58, Spare_59, Spare_60, Spare_61,
Spare_62, Spare_63, Spare_64, Spare_65, Spare_66,
Spare_67, Spare_68, Spare_69, Spare_70, Spare_71,
Spare_72, Spare_73, Spare_74, Spare_75, Spare_76,
Spare_77, Spare_78, Spare_79, Spare_80, Spare_81,
Spare_82, Spare_83, Spare_84, Spare_85, Spare_86,
Spare_87, Spare_88, Spare_89, Spare_90, Spare_91,
Spare_92, Spare_93, Spare_94, Spare_95, Spare_96,
Spare_97, Spare_98, B61_0, B61_10, B61_2, B61_3,
B61 4, B61_5);

Not available in demo configuration —
Stub to
RIGHT_CFT_AG_WPN_IDENT_CODE
= NONE.

D_GEN_10HZ_UNPACK_PIM

LEFT_CFT_AG_WPN_IDENT_CODE :
U_Pacs_Types.Ag_Store_Type;

type Ag_Store_Type is (None, Mk_82, Mk_82Se, Mc_1,
Mk_84, Mk_82Ar, Mk_84Ar, Bdu_33, Cbu_52, Cbu_58,
Cbu_71, Cbu_87, Cbu_89, Cbu_97, Spare_14,
Spare_15, Suu_20, Suu_20M, Suu_20N, Mk_20,
Agm_65A, Agm_65B, Agm_65D, Agm_65G, Gbu_15S,
Gbu_10A, Gbu_10M, Gbu_12B, Gbu_12C, Gbu_15L,
Tgbu_15, Gbu_24, Axq_14, Unknown, Mxu_648, Idlp,
Fuel, Spare_37, Alq_119, Alg_131, Blu_107, Gbu_10B,
Spare_42, Spare_43, Gbu_24A, Gbu_28, Agm_130A,
Agm_130C, Tgm_65A, Tgm_65B, Tgm_65D, Tgm_65G,
Spare_52, Spare_53, Spare_54, Spare_55, Spare_56,
Spare_57, Spare_58, Spare_59, Spare_60, Spare_61,
Spare_62, Spare_63, Spare_64, Spare_65, Spare_66,
Spare_67, Spare_68, Spare_69, Spare_70, Spare_71,
Spare_72, Spare_73, Spare_74, Spare_75, Spare_76,
Spare_77, Spare_78, Spare_79, Spare_80, Spare_81,
Spare_82, Spare_83, Spare_84, Spare_85, Spare_86,
Spare_87, Spare_88, Spare_89, Spare_90, Spare_91,
Spare_92, Spare_93, Spare_94, Spare_95, Spare_96,
Spare_97, Spare_98, B61_0, B61_10, B61_2, B61_3,
B61_4, B61_5);

Not available in demo configuration —
Stub to
LEFT_CFT_AG_WPN_IDENT_CODE
= NONE.

D_GEN_10HZ_UNPACK_PIM

RIGHT_CFT_AG_WPN_COUNT_FLAG:
U_Common_Types.Three_Bits;

subtype Three_Bits is Integer_Shortrange 0 .. 7;
type Integer_Short is range -32768 .. 32767,

Not available in demo configuration —
Stub to
RIGHT_CFT_AG_WPN_COUNT_FLA
G=0

D_GEN_10HZ_UNPACK_PIM

LEFT_CFT_AG_WPN_COUNT_FLAG :
U_Common_Types.Three_Bits;

subtype Three_Bits is Integer_Shortrange 0 .. 7;
type Integer_Short is range -32768 .. 32767,

Not available in demo configuration —
Stub to
LEFT_CFT_AG_WPN_COUNT_FLAG
=0

99

F-15 OWS PIM

F-15 COFP

D_GEN_20HZ_UNPACK_PIM

PACS_COMBAT_MODE_MISSILE_PRESENT :
Pacs_Combat_Mode_Missile_Present_Type;
type Pacs_Combat_Mode_Missile_Present_Type is

array (U_Pacs_Types.Weapon_Sta_Type) of Boolean;

type Weapon_Sta_Type is (Sta_2A, Sta_2B, Sta_8A,
Sta_8B, Sta_3, Sta_4, Sta_6, Sta_7, Sta_2, Sta_8,
Sta_5);

Not available in demo configuration —
Stub to
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_2A) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_2B) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_8A) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_8B) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_3) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_4) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_6) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_7) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_2) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_8) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_5) = False.

D_GEN_20HZ_UNPACK_PIM

ADC_INVALID_FLAG ADC : Boolean;
will not be used!!!(ADP)

Not available in COSSI — Stub to
ADC INVALID FLAG=False

D_GEN_20HZ_UNPACK_PIM

SPIKE_CHECK_DATA_IS_SPIKED:
Spike_Check_Data_Is_Spiked_Type;

type Spike_Check_Data_Is_Spiked_Type is

array (Spike_Parameter_Type) of Boolean;

type Spike_Parameter_Type is (True_Aoa, Local_Aoa,
Mach_Number, Pressure_Ratio,
Baro_Corr_Press_Altitude, Pressure_Altitude,
Normal_Acceleration);

Not available in COSSI — Stub to
SPIKE_CHECK_DATA_IS_SPIKED(T
RUE_AOA) =
SPIKE_CHECK_DATA_IS_SPIKED(L
OCAL_AOA) =
SPIKE_CHECK_DATA_IS_SPIKED(M
ACH_NUMBER) =
SPIKE_CHECK_DATA_IS_SPIKED(P
RESSURE_RATIO) =
SPIKE_CHECK_DATA_IS_SPIKED(B
ARO_CORR_PRESS_ALTITUDE) =
SPIKE_CHECK_DATA_IS_SPIKED(P
RESSURE_ALTITUDE) =
SPIKE_CHECK_DATA_IS_SPIKED(N
ORMAL_ACCELERATION) = False

D_HUD_CONTROL_PIM

AOA_LIMIT.DISPLAYED_VALUE : Num.Integer_Short
range 20 .. 50;
type Integer_Short is range -32768 .. 32767,

Not available in demo configuration —
Stub to 50 cockpit units (Note stub is
short integer type) to ensure logic to
activate tone is not entered (tone
capability is not wired in airplane)

D_MPDP_20HZ_INPUT_PIM

GRP_ACTIVE : Grp_Active_Array;
type Grp_Active_Array is array (Side_A_B) of
Mpdpt.Grp_Active_Type;
type Side_A_B is (Side_A, Side_B);
type Grp_Active_Type is array (Cmt.Du_Type) of
Boolean;

for Grp_Active_Type'Size use 8;

Not available in demo configuration —
Stub GRP_ACTIVE(SIDE_B)(DU7) to
True

D_MPDP_20HZ_INPUT_PIM

GRP_ASSIGNED_TO_BUS_B:
Grp_Assigned_To_Bus_B_Array;

type Grp_Assigned_To_Bus_B_Array is

array (Side_A_B) of
Mpdpt.Grp_Assigned_To_Bus_B_Type;

type Side_A_ B is (Side_A, Side_B);

type Grp_Assigned_To_Bus_B_Type is array
(Cmt.Du_Type) of Boolean;

for Grp_Assigned To Bus B Type'Size use 8;

Not available in demo configuration —
Stub GRP_ASIGNED_TO_BUS_B
(SIDE_B)(DU7) to True

100

F-15 OWS PIM

F-15 COFP

D_MPDP_20HZ_INPUT_PIM

CAU_NORMAL_ACCELERATION : Bdt.G_Accel;
type G_Accel is new Real range -16.0 .. 16.0;
-- Acceleration, gravities

Not available in demo configuration --
Use INS value as default.
A5INS.h(88): const BQualityDouble&
GetNormalAcceleration()

Ex. theA5INS_Ptr_->
GetNormalAcceleration()

Returns reference to BqualityDouble —
GetValue() returns Normal
Acceleration/double/ft/sec2. (Convert
from ft/sec2 to g's for
CAU_NORMAL_ACCELERATION)
IsValid() returns bool.

D_MPDP_20HZ_INPUT_PIM

LEFT_CFT_FUEL_WEIGHT : Bdt.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to 4524. Ibs

D_MPDP_20HZ_INPUT_PIM

RIGHT_CFT_FUEL_WEIGHT : Bdt.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to 4524. Ibs

D_MPDP_20HZ_INPUT_PIM

TOTAL_FUEL_WEIGHT : Bdt.Pounds;
type Pounds is new Real;

Not available in demo configuration —
Stub to 13300 Ibs

If VALUE entered from scratch-pad,
TOTAL_FUEL_WEIGHT=VALUE*100
Ibs limited 0 to 13300 Ibs.

D_MPDP_20HZ_INPUT_PIM

GP_ROTATING_BIT_PATTERN : Mpdpt.
Gp_Rotating_Bit_Pattern_Type;

type Gp_Rotating_Bit_Pattern_Type is (Frame_0,
Frame_1, Frame_2, Frame_3);

Not available in demo configuration —
Set GP_ROTATING_BIT_PATTERN =
FRAME_O,
FRAME_1,FRAME_2,FRAME_3 on a
rotating basis at 20 Hz.

D_MPDP_20HZ_INPUT_PIM

OWS_RESET_SWITCH_DEPRESSED : Boolean;

Not available in demo configuration —
Stub to False

D_PACS_20HZ_INPUT_PIM

PACS_INOPERATIVE_RESET_BIT_FLAG : Boolean;

Not available in demo configuration —
Stub to
PACS_INOPERATIVE_RESET_BIT_F
LAG = False

D_PACS_20HZ_INPUT_PIM

UNKNOWN_WPN_WEIGHT_CLASS :
Pacst.Unknown_Wpn_Weight_Class_Type;

type Unknown_Wpn_Weight_Class_Type is (Ows_Off,
Class_1, Class 2, Class_3);

Not available in demo configuration —
Options are OWS_OFF, CLASS 1,
CLASS_2, CLASS_3. For demo stub
to OWS_OFF.

|_PACS_CMBT_TRNG_
BUFFER

MSG_06_WORD_10.NUC_TRNG_LOAD_RC:
U_Pacs_Types.Nuc_Training_Store;

type Nuc_Training_Store is (None, Spare_1, Suu_20,
Spare_2, Bdu_38);

Not available in demo configuration — It
issetequaltoa
NUC_TRNG_LOAD_TYPE which is set
equal to an element from
NUC_TRAINING_STORE. Options for
NUC_TRAINING_STORE are NONE,
SPARE_1, SUU_20, SPARE_2 and
BDU_38. For demo, stub to NONE.

|_PACS_CMBT_TRNG_
BUFFER

MSG_06_WORD_08.NUC_TRNG_LOAD_LC
U_Pacs_Types.Nuc_Training_Store;

type Nuc_Training_Store is (None, Spare_1, Suu_20,
Spare_2, Bdu_38);

Not available in demo configuration — It
is setequalto a
NUC_TRNG_LOAD_TYPE which is set
equal to an element from
NUC_TRAINING_STORE. Options for
NUC_TRAINING_STORE are NONE,
SPARE_1, SUU_20, SPARE_2 and
BDU_38. For demo, stub to NONE.

X_EXECUTIVE_CONTROL

FIRST_PASS_FOR_10_HZ: First_Pass_Flag_Type;
type First_Pass_Flag_Type is (Not_First_Pass,
Power_Up, Pilot_Reset, Reconfiguration);

(Note change of variable name from ...10HZ to ...10_HZ)

Not available in demo configuration —
Options are NOT_FIRST_PASS,
POWER_UP, PILOT_RESET and
RECONFIGURATION. Set to
POWER_UP for first execution of 10HZ
and 10HZ WARN, NOT_FIRST_PASS
for subsequent executions.

101

F-15 OWS PIM

F-15 COFP

X_EXECUTIVE_CONTROL

H2_PERIPHERAL_DATA_INVALID :
H9_Peripheral_Data_Invalid_Type;

type H9_Peripheral_Data_Invalid_Type is array
(H9_Peripheral_Type) of Boolean;

type H9_Peripheral_Type is (Dbiu, Adc, Ahrs, Spare_3,
Spare_4, Spare_5, Pacs, Spare_7, Sdrs, Spare_9,
Spare_10, Rwr, Spare_12, Spare_13, --SPARE_13is
reserved for AHRS problem workaround Si, Ics);

Not available in demo configuration? —
Stub to
X_EXECUTIVE_CONTROL.H2_DATA.
H2_PERIPHERAL_DATA_
INVALID(PACS) = False

X_EXECUTIVE_CONTROL

DISP_20_HZ_PERIPHERAL_DATA_INVALID :
Disp_Peripheral_Data_Invalid_Type;

type Disp_Peripheral_Data_Invalid_Type is

array (Disp_Peripheral_Type) of Boolean;
type Disp_Peripheral_Type is (Reserved_0, Spare_1,
Spare_2, Spare_3, Spare_4, Spare_5, Spare_6,
Spare_7, Spare_8, Spare_9, Spare_10, Spare_11,
Spare_12, Spare_13, Spare_14, Spare_15, Mpdpa,
Mpdpb, Spare_18, Spare_19, Spare_20, Spare_21,
Spare_22, Spare_23, Spare_24, Spare_25, Spare_26,
Spare_27, Spare_28, Spare_29, Cc_Rt, Reserved _31);

Not available in demo configuration? —
Stub to
X_EXECUTIVE_CONTROL.A1_DATA.
DISP_20_HZ_PERIPHERAL_DATA_
INVALID(D_MPDP_PACKING_PIM.PI
M.GPIO)=False
X_EXECUTIVE_CONTROL.A1_DATA.
DISP_20 HZ_PERIPHERAL_DATA_
INVALID(MPDPB)=False

X_EXECUTIVE_CONTROL

DISCRETE_INPUTS : Discrete_Inputs_Type;
type Discrete_Inputs_Type is array
(Discrete_Inputs_Index) of Boolean;

for Discrete_Inputs_Type'Size use 16;
type Discrete_Inputs_Index is (Aiul_Go, Unused_2, E1,
Unused_4, Unused_5, Unused_6, Unused_7, Unused_8,
Unused_9, Unused_10, Unused_11, Unused_12,
Unused 13, Unused 14, Unused 15, Unused 16);

Stub
X_EXECUTIVE_CONTROL.PIM.DISC
RETE_INPUTS(E1) = TRUE

X_EXECUTIVE_CONTROL

AV_PERIPHERAL_DATA_INVALID :
Av_Peripheral_Data_Invalid_Type;

type Av_Peripheral_Data_Invalid_Type is array
(Av_Peripheral_Type) of Boolean;

for Av_Peripheral_Data_Invalid_Type'Size use 32;
type Av_Peripheral_Type is (Reserved_0, Redu,
Spare_2, Spare_3, Gps, Ins, Spare_6, Spare_7, Sfdr,
Ledu, Radar, Rwr, Reserved_Mpdp, Spare_13,
Spare_14, Ics, Spare_16, Map, AiulA, AiulB, Aiu2,
Nav_Pod, Tgt_Pod, Afcs, Adp, Spare_25, Spare_26,
Spare_27, Spare_28, Si, Cc_Rt, Reserved 31);

Not available in demo configuration? --
Stub to
X_EXECUTIVE_CONTROL.AI_DATA.
AV_PERIPHERAL_DATA_INVALID(IN
S) = False
X_EXECUTIVE_CONTROL.AI_DATA.
AV_PERIPHERAL_DATA_INVALID(A
FCS) = False

102

F-15 OWS PIM

F-15 COFP

D_DISPLAY_MGMT_PIM

FORMAT_LOCATION_INDICATOR_ARRAY(OWS) :
Format_Location_Indicator_Array_Type;

type Format_Location_Indicator_Array_Type is

array (Cmt.Format_Type) of Cmt.Du_Location_Type;
subtype Format_Type is Format_Codes_Type range
None .. Srad;
type Format_Codes_Type is

-- MENU 1 FORMATS

(None, -- 0 also HUD
Eadi, -1
Armt, -2
Ehsi, -3
Tf_Rdr, -4
Tsd, -5
Menu_1_Pb_6_Reserved, --6
Menu_1 Pb 7 Reserved, --7
Menu_1_Pb_8 Spare, -8
Menu_1_Pb_9_Spare, -9
Vitrs, --10
Menu_2, -11
Tagt_Ir, -12
Tews, -13
Ag_Rdr, - 14
Aa_Rdr, - 15
Menu_1 Pb_16_Spare, --16
Hud_Repeater, - 17
Eng, -18
Event, -19
Bit, - 20

-- MENU 2 FORMATS

Wind_Model, --21
Ag_Delivery, - 22
Menu_2_Pb_3_Spare, - 23
Menu_2_Pb_4 Spare, -24
Data_Frame, -25

Menu_2_Pb_6_Reserved, -- 26
Menu_2_Pb_7_Reserved, --27

Menu_2_Pb_8 Spare, --28
Menu_2_Pb_9 Spare, - 29
Ows, --30
Menu_1, -31

Menu_2_Pb_12_Spare, --32
Menu_2 _Pb_13 Spare, --33
Menu_2_Pb_14 Spare, --34
Menu_2_Pb_15 Spare, --35

Vid_8, - 36
Hud_Prog, - 37
Vid_5, - 38
Dtm, -39
Vid_2, - 40

-- FORMATS NOT ON MENU

Srad, Spare42, Spare43, Spare44, Spare45, Spare46,
Spare4d7, Spare48, Spare49, Spare50, Spare51,
Spare52, Spare53, Spare54, Spare55, Spare56,
Spare57, Spare58, Spare59, Spare60, Spare61,
Spare62, Spare63);

subtype Du_Location_Type is
Refresh_Bufr_Location_Type range None .. Du7;

type Refresh_Bufr_Location_Type is (None, Du0, Hud,
Du2, Du3, Du4, Du5, Du6, Du7, Macro_Subs, Cautions);

Not available in demo configuration —
Stub to =NONE

103

F-15 OWS PIM F-15 COFP

D_DISPLAY_MGMT_PIM DISPLAY_BUFFER_ARRAY. Not available in demo configuration. It
PUSHBUTTON_DEPRESSION_NUMBER will not be accessed if
Display_Buffer_Array : Display_Buffer_Array_Type; FORMAT_LOCATION_INDICATOR_A
type Display_Buffer_Array_Type is array (Cmt.Du_Type) RRAY(OWS)==NONE. Can be stubbed
of Display_Buffer_Type; to =CLR for completeness, but not

subtype Du_Type is Du_Location_Type range DuO .. Du7; | required.
subtype Du_Location_Type is
Refresh_Bufr_Location_Type range None .. Du7;

type Refresh_Bufr_Location_Type is (None, Du0, Hud,
Du2, Du3, Du4, Du5, Du6, Du7, Macro_Subs, Cautions);
Pushbutton_Depression_Number :
Mpdpt.Du_Pushbutton_Type;

subtype Du_Pushbutton_Type is Du_Switch_Code_Type
range None .. Pb_20;

type Du_Switch_Code_Type is (None, Pb_1, Pb_2,
Pb_3, Pb_4, Pb_5,Pb_6, Pb_7, Pb_8, Pb_9, Pb_10,
Pb_11, Pb_12, Pb_13, Pb_14, Pb_15, Pb_16, Pb_17,
Pb_18, Pb_19, Pb_20, Spare_21, Spare_22, Spare_23,
Bright_Increase, Bright_Decrease, Contrast_Increase,
Contrast_Decrease, Spare_28, Spare_29, Spare_30,
Initiated_Bit);

N_ENGINE_MONITOR_05HZ IPE_INSTALLED : Boolean; A5EDU.h(80): XTypes::UInt16
_PIM GetTypeOfEngine();

Compare: theLEDU_Ptr-
>GetTypeOfEngine()==PW229 And
theREDU_Ptr-
>GetTypeOfEngine()==PW229

If both are true, IPE_INSTALLED =
True, else False

104

Appendix C. Sample WrapidH C++ Listing

/
File generated by WrapidH, version 1.1

/
#include "D_OWS_10_HZ_C_PIM.h"
#include "D_OWS_20_HZ_C_PIM.h"
#include "A5ADP.h" Uses the Host’'s ADP aircraft state data
#include "D_ADC_C_PIM.h"

#include "D_AFCS_C_PIM.h"

#include "A5AFCS.h"

#include "D_MPDP_C_PIM.h"

#include "BQualityDouble.h"

#include "A5AIU.h"

#include "D_AIU_C_PIM.h"

#include "A5EDU.h"

#include "N_ENGINE_MONITOR_05HZ_C_PIM.h"
#include "ASUPACS.h"

#include "D_PACS_C_PIM.h"

#include "A5WeightOffWheels.h"
#include "D_GEN_20HZ_C_PIM.h"
#include "A5INS.h"

#include "BAnglePiOver2.h"

#include "D_INS_C_PIM.h"

#include "D_OWS_TYPES.h"

#include "U_BASIC_DATA_TYPES.h"
#include "INTERFACES.C.h"

#include "U_NUMBER_TYPES.h"
#include "XTypes.h"

#include "Unknown.h"

#include "A5AIU2_Types.h"

#include "ASADP_Device.h"

#include "ASAFCS_Device.h"

#include "A5AIU_Device.h"

#include "ASEDU_Device.h"

#include "ASUPACS_Device.h"
#include "A5WeightOffWheels_Device.h"
#include "A5INS_Device.h"

#include "OWS_Wrapper.h" Uses the top-level wrapper
class OWS_Wrapper {
public:

OWS_Wrapper();

Boolean GetAOA_THRESHOLD_EXCEEDED();
FIXED_POINT_SHORT_SCALE_17_TYPE GetBIT_AUDIT_TOTAL_AIRCRAFT_WEIGHT();
Boolean GetCAU_FAILURE_DETECTED();

Boolean GetCAU_FAILURE_DETECTED_THIS_PASS();
G_ACCEL GetCAU_NZ_LOAD_FACTOR_INPUTY();

Boolean GetCAU_NZ_MONITOR_ON();

CFT_TABLE_TYPE GetCFT_FUEL_WEIGHT();

C_float GetCFT_NZ_ALLOWABLE();
CFT_TABLE_INDEX_TYPE GetCFT_TABLE_INDEX();
CFT_TABLE_TYPE GetCFT_TOTAL_WEIGHT();
WARNING_RATIO_TYPE GetCFT_WARNING_RATIO();
DECIMAL_DEGREES GetDECIMAL_AOA();
INTEGER_SHORT GetDEFAULT_AOA_TONE_LIMIT();
Boolean GetDISPLAY_BLANKS_FOR_AOA();
POUNDS_PER_SQUARE_FOOT GetDYNAMIC_PRESSURE();
FLAG_TYPE_FOR_DTM_WRITE GetEND_OF_EVENT_FOR_DTM_WRITE();
Boolean GetFIRST_CAU_FILTER_PASS();

C_float GetFWD_FUSELAGE_NZ_ALLOWABLE();

C_float GetFWD_FUSELAGE_WARN_RATIO();

Boolean GetGOTO_END_OF_CALC_MASS_ITEMS();

Boolean GetHUD_INVALID_ARMT_DISP();

Boolean GetINFLIGHT_INVALID_ARMT_DISP();

Boolean GetINS_GROUND_ALIGN_COMPLETE();

G_ACCEL GetINS_NZ_LOAD_FACTOR_INPUT();

G_ACCEL GetLAST_PASS_CAU_FILTER_OUTPUT();
G_ACCEL GetLAST_PASS_CAU_NZ();

G_ACCEL GetLAST_PASS_INS_FILTER_OUTPUT();
POUNDS GetLAST_PASS_LATERAL_STICK();

105

G_ACCEL GetLAST_PASS_NORMAL_ACCELERATION();

Boolean GetLATCH_CAU_FAILURE();

WARNING_RATIO_TYPE GetLEFT_TAIL_WARNING_RATIO();

Boolean GetLOAD_FACTOR_IS_VALID();

C_float GetMASS_ITEMS_WARN_RATIO();

REAL GetMAX_NEGATIVE_MAGNITUDE_G();

REAL GetMAX_POSITIVE_MAGNITUDE_G();
RECALL_DATA_COMPONENT_TYPE GetMOST_RECENT_DISPLAY_INDEX();
REAL GetMOST_RECENT_DISPLAY_NZ(); Declares the sample variable
WARNING_RATIO_TYPE GetMOST_RECENT_DISPLAY_RATIO();

Boolean GetNAV_LANTIRN_POD_ON_BOARD();
FLAG_TYPE_FOR_DTM_WRITE GetNEW_PEAK_FOUND_FOR_DTM_WRITE();
NZ_RECALL_TABLE_TYPE GetNZ_RECALL_TABLE();

Boolean GetNZ_SOURCES_INVALID();

Boolean GetOWS_CLEAR_ENABLED_FLAG();

OWS_FUEL_VALIDITY_TYPE GetOWS_FUEL_VALIDITY_FLAG();
OWS_VALIDITY_TYPE GetOWS_VALIDITY_FLAG();
OWS_20HZ_VALIDITY_TYPE GetOWS_VALIDITY_FLAG();

Boolean GetOWS_WARN_RATIO_THRESHOLD_EXCEEDED();

REAL GetPYLON_NZ_ALLOWABLE();

WARNING_RATIO_TYPE GetPYLON_WARNING_RATIO();

Boolean GetRESET_DTM_MAX_RATIO_VARIABLES();

Boolean GetRESET_MANUAL_CLEAR_FLAGS();

Boolean GetRESET_MAX_MIN_G_VALUES();

Boolean GetRESET_RECALL_TABLE_FLAGS();

Boolean GetRESET_VOICE_COUNTER();

WARNING_RATIO_TYPE GetRIGHT_TAIL_WARNING_RATIO();

Boolean GetSET_ASP_LATCH_FOR_INVALID_ARMT();
STATION_WEIGHT_TABLE_TYPE GetSTATION_WEIGHT();

Boolean GetTGT_LANTIRN_POD_ON_BOARD();

POUNDS GetTOTAL_AIRCRAFT_WEIGHT();

POUNDS GetTOTAL_OLD_FUEL_WEIGHT();
WARNING_RATIO_RECALL_TABLE_TYPE GetWARNING_RATIO_RECALL_TABLE();
REAL GetWING_C_CONST_MODIFIER();

REAL GetWING_NZ_ALLOWABLE();

WARNING_RATIO_TYPE GetWING_WARNING_RATIO();

void Initialize(); Declares the four major wrapper processes
void PERFORM_OWS_10HZ_NZ_WARN_Wrapper();

void PERFORM_OWS_10_Hz_Wrapper();

void PERFORM_OWS_20HZ_Wrapper();

private:

void register_interest_in_events(); Declares the registration for wrapper execution events
b

OWS_Wrapper::OWS_Wrapper():

theASADP_ptr_(A5ADP_Device::Instance()), Establishes the ADP data instance

theASAFCS_ptr_(A5AFCS_Device::Instance()),

theA5AIU_ptr_(A5AIU_Device::Instance()),

theASEDU_ptr_(ASEDU_Device::Instance()),
theASUPACS_ptr_(ASUPACS_Device::Instance()),
theA5WeightOffWheels_ptr_(A5WeightOffWheels_Device::Instance()),
theASINS_ptr_(A5INS_Device::Instance())

{

h

REAL OWS_Wrapper::GetMOST_RECENT_DISPLAY_NZ() Sample variable processing

REAL temp37;
temp37 = PIM.MOST_RECENT_DISPLAY_NZ;
return temp37;

I8

void OWS_Wrapper::PERFORM_OWS_20HZ_Wrapper() 20 Hz wrapper processing
{
ADC_C_PIM.mach_number = (theASADP_ptr_->GetMach())->GetValue(); Gets current Mach No. from Host

ADC_C_PIM.local_angle_of attack = (theASADP_ptr_->GetLocalAngleOfAttack())->GetAngle();
ADC_C_PIM.local_angle_of_attack_valid = (theASADP_ptr_->GetLocalAngleOfAttack())->IsValid();
ADC_C_PIM.baro_corrected_pressure_altitude = (theASADP_ptr_->GetBaroCorrectedPressureAltitude())->GetValue();
ADC_C_PIM.true_angle_of_attack = (theASADP_ptr_->GetTrueAngleOfAttack())->GetAngle();
ADC_C_PIM.pressure_ratio = (theASADP_ptr_->GetPressureRatio())->GetValue();
AFCS_C_PIM.landing_gear_handle_is_up = theASAFCS_ptr_->GetLandingGearHandlelsUp();
AFCS_C_PIM.lateral_stick_force = (theASAFCS_ptr_->GetLateralStickForce())->GetValue();
AFCS_C_PIM.lateral_stick_force_is_valid = theASAFCS_ptr_->GetLateralStickForcelsValid();
AFCS_C_PIM.left_stab_main_ram_pos_is_valid = theASAFCS_ptr_->GetLeftStabMainRamPoslIsValid();
AFCS_C_PIM.I_h_stabilator_ram_position = (theASAFCS_ptr_->GetLH_StabRamPosition())->GetValue();

106

AFCS_C_PIM.r_h_stabilator_ram_position = (theASAFCS_ptr_->GetRH_StabRamPaosition())->GetValue();
AFCS_C_PIM.right_stab_main_ram_pos_is_valid = theASAFCS_ptr_->GetRightStabMainRamPoslIsValid();
AFCS_C_PIM.roll_rate = (theAS5AFCS_ptr_->GetRollRate())->GetValue();

AFCS_C_PIM.roll_rate_is_valid = theA5AFCS_ptr_->GetRollRatelsValid();
AFCS_C_PIM.spin_recovery_display = theASAFCS_ptr_->GetSpinRecoveryDisplay();
AFCS_C_PIM.yaw_rate = (theASAFCS_ptr_->GetYawRate())->GetValue();
AFCS_C_PIM.yaw_rate_is_valid = theAS5AFCS_ptr_->GetYawRatelsValid();
AFCS_C_PIM.yaw_rate_tone_priority = theASAFCS_ptr_->GetYawRateTonePriority();
MPDP_C_PIM.cau_normal_acceleration = (theASAFCS_ptr_->GetNormalAcceleration())->GetValue();
INS_C_PIM.normal_acceleration = (theA5INS_ptr_->GetNormalAcceleration())->GetValue();
OWS_20HZ_PIM_TRANSFER__OWS_20HZ_Transfer_To_Ada(); Transfers C PIM data to Ada PIMs

1

107

Appendix D. Sample WrapidH Ada Listing

-- File generated by WrapidH, version 1.1

WITH D_ADC_C_PIM; Uses Wrapper ADC PIM loaded by processing above (Mach No., etc.)
WITH D_ADC_20HZ_INPUT_PIM; Uses Legacy OWS ADC data input PIM
WITH D_AFCS_C_PIM;
WITH D_AFCS_20HZ_INPUT_PIM;
WITH D_MPDP_C_PIM;
WITH D_INS_C_PIM;
WITH D_INS_20HZ_INPUT_PIM;
WITH D_MPDP_20HZ_INPUT_PIM;
WITH D_HUD_CONTROL_PIM;
WITH D_GEN_20HZ_UNPACK_PIM;
WITH D_GEN_10HZ_UNPACK_PIM;
WITH D_OWS_20_HZ;
WITH D_OWS_20_HZ_PIM; Uses Legacy OWS output PIM
WITH D_OWS_20_HZzZ_C_PIM; Uses Wrapper output PIM that receives data for transfer
WITH OWS_Stubs;
WITH U_NUMBER_TYPES;
WITH INTERFACES.C; Uses C/ Adainterfaces
WITH U_BASIC_DATA_TYPES;
WITH U_MPDP_TYPES;
PACKAGE OWS_20HZ_PIM_TRANSFER IS
PROCEDURE OWS_20HZ_Transfer_To_Ada;
PRAGMA EXPORT(C, OWS_20HZ_Transfer_To_Ada, "OWS_20HZ_PIM_TRANSFER__OWS_20HZ_Transfer_To_Ada");
END OWS_20HZ_PIM_TRANSFER;
PACKAGE BODY OWS_20HZ_PIM_TRANSFER IS
PROCEDURE OWS_20_HZ_Copy_Outputs IS
BEGIN
D_OWS_20_HZ_C_PIM.OWS_20_HZ_C_PIM.MAX_NEGATIVE_MAGNITUDE_G =
INTERFACES.C.C_float(D_OWS_20_HZ_PIM.PIM.MAX_NEGATIVE_MAGNITUDE_G);
D_OWS_20_HZ_C_PIM.OWS_20_HZ_C_PM.MAX_POSITIVE_MAGNITUDE_G :=
INTERFACES.C.C_float(D_OWS_20_HZ_PIM.PIM.MAX_POSITIVE_MAGNITUDE_G);
D_OWS_20_HZ_C_PIM.OWS_20_HZ_C_PIM.MOST_RECENT_DISPLAY_NZ :=
INTERFACES.C.C_float(D_OWS_20_HZ_PIM.PIM.MOST_RECENT_DISPLAY_NZ); Interface OWS output to Wrapper
D_OWS_20_HZ_C_PIM.OWS_20_HZ_C_PIM.NZ_RECALL_TABLE :=
INTERFACES.C.C_float(D_OWS_20_HZ_PIM.PIM.NZ_RECALL_TABLE);
D_OWS_20_HZ_C_PIM.OWS_20_HZ_C_PIM.WARNING_RATIO_RECALL_TABLE :=
INTERFACES.C.C_float(D_OWS_20_HZ_PIM.PIM.WARNING_RATIO_RECALL_TABLE);
END OWS_20_HZ_Copy_Outputs;
PROCEDURE OWS_20HZ_Transfer_To_AdalS
temp65 : U_MPDP_TYPES.GP_ROTATING_BIT_PATTERN_TYPE;
BEGIN
D_ADC_20HZ_INPUT_PIM.PIM.TRUE_ANGLE_OF_ATTACK :=
U_BASIC_DATA_TYPES.ELEVATION_TYPE(D_ADC_C_PIM.ADC_C_PIM.true_angle_of_attack);
D_ADC_20HZ_INPUT_PIM.PIM.MACH_NUMBER :=
U_NUMBER_TYPES.REAL(D_ADC_C_PIM.ADC_C_PIM.mach_number); Copy Wrapper Mach No. into OWS input PIM
D_ADC_20HZ_INPUT_PIM.PIM.PRESSURE_RATIO :=
U_NUMBER_TYPES.REAL(D_ADC_C_PIM.ADC_C_PIM.pressure_ratio);
D_ADC_20HZ_INPUT_PIM.PIM.BARO_CORRECTED_PRESSURE_ALTITUDE :=
U_NUMBER_TYPES.REAL(D_ADC_C_PIM.ADC_C_PIM.baro_corrected_pressure_altitude);
D_ADC_20HZ_INPUT_PIM.PIM.LOCAL_ANGLE_OF_ATTACK :=
U_NUMBER_TYPES.REAL(D_ADC_C_PIM.ADC_C_PIM.local_angle_of_attack);
D_ADC_20HZ_INPUT_PIM.PIM.LOCAL_ANGLE_OF_ATTACK_VALID :=
Boolean(D_ADC_C_PIM.ADC_C_PIM.local_angle_of_attack_valid);
D_AFCS_20HZ_INPUT_PIM.PIM.R_H_STABILATOR_RAM_POSITION :=
U_NUMBER_TYPES.REAL(D_AFCS_C_PIM.AFCS_C_PIM.r_h_stabilator_ram_position);
D_AFCS_20HZ_INPUT_PIM.PIM.L_H_STABILATOR_RAM_POSITION :=
U_NUMBER_TYPES.REAL(D_AFCS_C_PIM.AFCS_C_PIM.|_h_stabilator_ram_position);
D_AFCS_20HZ_INPUT_PIM.PIM.ROLL_RATE := U_NUMBER_TYPES.REAL(D_AFCS_C_PIM.AFCS_C_PIM.roll_rate);
D_AFCS_20HZ_INPUT_PIM.PIM.MODE_DISCRETE_WORD.LANDING_GEAR_HANDLE_IS_UP :=
Boolean(D_AFCS_C_PIM.AFCS_C_PIM.landing_gear_handle_is_up);
D_AFCS_20HZ_INPUT_PIM.PIM.MODE_DISCRETE_WORD.YAW_RATE_TONE_PRIORITY :=
Boolean(D_AFCS_C_PIM.AFCS_C_PIM.yaw_rate_tone_priority);
D_AFCS_20HZ_INPUT_PIM.PIM.MODE_DISCRETE_WORD.SPIN_RECOVERY_DISPLAY :=
Boolean(D_AFCS_C_PIM.AFCS_C_PIM.spin_recovery_display);
D_AFCS_20HZ_INPUT_PIM.PIM.VALIDITY_WORD.YAW_RATE_IS_VALID :=
Boolean(D_AFCS_C_PIM.AFCS_C_PIM.yaw_rate_is_valid);
D AFCS 20HZ INPUT PIM.PIM.VALIDITY WORD.ROLL RATE IS VALID :=

108

Boolean(D_AFCS_C_PIM.AFCS_C_PIM.roll_rate_is_valid);
D_MPDP_20HZ_INPUT_PIM.PIM.CAU_NORMAL_ACCELERATION :=
U_NUMBER_TYPES.REAL(D_MPDP_C_PIM.MPDP_C_PIM.cau_normal_acceleration);
D_INS_20HZ_INPUT_PIM.PIM.NORMAL_ACCELERATION :=
U_NUMBER_TYPES.REAL(D_INS_C_PIM.INS_C_PIM.normal_acceleration);
D_HUD_CONTROL_PIM.PIM.AOA_LIMIT.DISPLAYED_VALUE := U_NUMBER_TYPES.INTEGER_SHORT(1.0);
D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA IS _SPIKED(TRUE_AOA) := Boolean(FALSE);
D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(LOCAL_AOA) := Boolean(FALSE);
D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(MACH_NUMBER) := Boolean(FALSE);
D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(PRESSURE_RATIO) := Boolean(FALSE);
D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(BARO_CORR_PRESS_ALTITUDE) :=
Boolean(FALSE);
D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(PRESSURE_ALTITUDE) := Boolean(FALSE);
D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(NORMAL_ACCELERATION) := Boolean(FALSE);
D_GEN_10HZ_UNPACK_PIM.PIM.CFT_STATUS_FLAG := D_GEN_10HZ_UNPACK_PIM.CFT_TYPE(CFT_4);

temp65 =
OWS_Stubs.Next GP_ROTATING_BIT_PATTERN(D_MPDP_20HZ_INPUT_PIM.PIM.GP_ROTATING_BIT_PATTERN);
D_OWS_20 HZ.PERFORM_OWS_20HZ; Execute the Legacy OWS 20 Hz processing

OWS_20HZ_Transfer_To_Ada.OWS_20_HZ_Copy_Outputs; Copy the Legacy outputs to the wrapper
END OWS_20HZ_Transfer_To_Ada;
END OWS 20HZ PIM_TRANSFER,;

109

